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Chapter 1

Introduction

Augmented reality (AR) is an increasingly recognized technique for informa-
tion visualization. The general goal of AR applications is to simplify interactions
with the real world and improve its understanding. This is achieved by display-
ing computer-generated content into the user’s environment. Common tools for
visualization are hand-held devices, head-mounted-displays (HMD), or even pro-
jectors [BR05]. The main challenges in AR are to find the correct pose of the real
objects to augment, to render virtual content with geometrical consistency into
the user’s field of view, and to perform these steps in real time. Typically, AR
applications demand accurate identification and localization of objects in a single
frame, as well as 3D pose tracking over sequential images. Computer vision offers
solutions to these requirements that are inexpensive, non-intrusive, and practical
[LF05].

Typically, vision-based AR systems rely on a learning phase. During this phase,
the system learns the physical objects (targets) that it should augment. Specifi-
cally, the system is provided with a normalized model for each target. The models
are stored, using some canonical representation, in a database for availability dur-
ing runtime. When the learned targets become visible to the system’s camera,
the system detects and tracks them in order to compute their exact location and
finally render corresponding virtual objects over them. In the context of AR, de-
tection refers to the process that localizes a learned target-object in the camera
image and computes its pose with respect to the camera. If multiple targets are
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2 Chapter 1. Introduction

stored in the database, detection also involves the identification of the current
visible target. Furthermore, detection is the first step of tracking. In contrast
to detection, which is applied to single images, tracking refers to camera pose
estimation in temporal image sequences. Tracking is essential in AR applications
as it dramatically increases the accuracy and robustness of the system [UM12].

The literature [YJS06, UM12, LF05] differentiates between two categories of
tracking: (1) Tracking-by-detection tries to locate a target by matching each
camera-image against all the model-images in the database. Put differently, the
object detector is applied independently to each frame of the input video se-
quence. The single detections are then associated to form a track. (2) Tracking-
by-tracking or also frame-by-frame tracking tries to find correspondences between
the current camera-image and the previous camera-image in order to compute the
pose difference between the two frames. In this work, we use a hybrid approach
that combines these two methods.

The learned targets are subdivided into planar and non-planar objects [LF05].
While planar targets require only one single image to be learned, non-planar tar-
gets demand for a more elaborated model-representation. Our AR system will
work on planar targets. Traditionally, one further differentiates between marker-
based and marker-less AR systems. The first AR applications were marker-based.
They relied on fiducial markers placed into the environment. Such markers are
chosen to be easily detectable and identifiable with a camera. Even though they
are inherently easier to track than natural markers, they are also more intrusive
to the user’s environment [UM12]. For marker-less approach, the approach is as
follows: (1) Extract easily recognizable interest points, such as corners, in the
model-image and the camera-image; (2) describe the extracted interest points
using its surrounding image area; (3) find corresponding pairs of descriptors be-
tween the camera-image and the model-image. Searching for correspondences is
either performed using nearest-neighbor-search and a distance function (such as
the Hamming distance [WSB09a]), or by using randomized ferns or trees. In the
latter case, matching is seen as a classification problem [WRM+08]. Our imple-
mentation relies on natural feature-point matching using nearest-neighbor-search.
For a more thorough introduction on current augmented reality techniques, we
refer the reader to [NPS10], [UM12] and [Yua06]. They all give comprehensive
surveys of recent approaches.

The goal of this master thesis is to implement and evaluate a marker-less aug-
mented reality framework based on natural feature-point matching. The system
should be able to differentiate between multiple planar targets and compute their
pose relative to the camera. The pose estimation should be temporally smooth.
Finally, the system should be able to cope with common problem cases that occur
in practice, like objects entering or leaving the camera’s field of view.

2



1.1. Related Work 3

In this work, we implemented an AR framework for planar targets based on
the ORB [RRKB11] feature-point descriptor. The implementation is written
in C++ and uses the ORB implementation provided with the OpenCV library
[Bra00]. The main components of the framework are a detector, a tracker and
a graphical overlay. The detector returns a homography that maps the model-
image onto the target in the camera-image. The homography is estimated from
a set of feature-point correspondences using the Direct Linear Transform (DLT)
algorithm and Levenberg-Marquardt (LM) optimization [HZ00]. The outliers in
the set of feature-point correspondences are removed with an extended version
of Random Sample Consensus (RANSAC) [FB81]. The tracker is based on the
Kalman filter [FP02], which applies a consistent dynamic movement on the tar-
get. In a hierarchical matching scheme, we extract additional matches from con-
secutive frames and perspectively transformed model-images, which yields more
accurate and jitter-free homography estimations. The graphical overlay computes
the six-degree-of-freedom (6DoF) pose from the estimated homography. Finally,
to visualize the computed pose, it draws a cube on the surface of the tracked tar-
get. In the evaluation part, we analyze the performance of our system by looking
at the accuracy of the estimated homography and the ratio of correctly tracked
frames. The evaluation is based on the groundtruth information provided by two
datasets [LBMN09] and [GHT11]. We evaluate most components of the frame-
work under different target movements and lighting conditions. In particular,
we proof that our framework is robust against considerable perspective distor-
tion and show the benefit of using the hierarchical matching scheme to minimize
jitter and improve accuracy.

1.1 Related Work
The choice for a feature-point descriptor plays an important role in a AR frame-
work: Some implementations such as [WRM+08] use a heavily-modified version
of SIFT [Low99] for real-time capabilities on mobile phones. Some introduce
new feature-point descriptors like [TCT+10] and others improve on existing ap-
proaches [RRKB11, TCT+12]. Our implementation is based on the ORB feature-
descriptor [RRKB11]. The general trend however seems to optimize for speed
rather than for reliability. Besides the choice of an appropriate feature-point
descriptor, the target itself is also of great importance for a satisfying tracking
result. Some effort was put into evaluating natural feature-point based tracking
targets [EB08, GZWS09, Low04]. After establishing feature-point correspon-
dences, an important step is the geometrical verification to remove outliers. A
well recognized approach is RANSAC [FB81], which has seen many alternations
and improvements over the years [CM05, SLK09, MBSS10]. We make use of the
traditional RANSAC with sample selection constraints based on [MBSS10] and

3



4 Chapter 1. Introduction

additionally introduce a sanity check after each iteration that rejects physically
impossible transformations.

It is not our goal to limit tracking to feature-points like [TK91] but rather com-
bine tracking of feature-points and, on a higher level, homographies using their
corner points. The higher level tracking has the benefit of avoiding the associa-
tion problem since corners are directly identifiable. Similar to [WSB09b], on the
feature-point level, we propagate inliers between consecutive frames. We combine
tracking and detection in a similar fashion to [TCT+10].

The Kalman filter [FP02] is a popular and very general tool for tracking. In
order to apply Kalman filtering to homography estimation, one needs to find a
parameterization for the homography. [KSF07, CMFO07] perform this by reduc-
ing the degrees of freedom of the homography to their specific application scenery
(road ground-plane estimation). Since a homography is fully determined (up to
scale) by four points, we use the position of the corner points of the mapped
target as parameters space for the Kalman filter. A similar approach is used by
[SÖL+10], they consider the action of the homography on a unit square.

In this work, we limit ourselves to 2D planar targets. Thus, the transforma-
tion of the target into the scene image can be expressed using a homography.
Other work use planar models to track 3D targets like [PLW08]. After finding
the homography, the model-image is reinterpreted as the projection of a 3D model
and each 2D feature-point is assigned a 3D coordinate.

After homography estimation, we still need to convert the perspective mapping
into a 3D-2D projection. The relation between homography and projection ma-
trix has been covered in the literature several times under different viewpoints
[Zha00, LF05, HZ00, FL88, MV+07]. The main idea is, given a homography
mapping a target object into the scene frame, compute the corresponding 6DoF
pose. The approaches of [Zha00, Stu00] and [LF05] both describe homography
decomposition and are similar to our work, but they omit to explain the im-
portant normalization step with respect to the determinant of the homography,
which guarantees orientation preservation.

1.2 Contributions
In this work, we implemented a planar target tracker for marker-less augmented
reality. In particular, our work includes the following aspects: (1) Detailed anal-
ysis of ORB [RRKB11] feature-points in the context of AR applications; (2) fast
RANSAC extension that is guaranteed to return only homographies that cor-
respond to rigid-body transformations; (3) hierarchic matching technique that

4



1.3. Nomenclature 5

improves tracking and makes the system robust to large angles between the nor-
mal of the target-surface and the optical axes of the camera; (4) measure for the
accuracy of the estimation homography based on the covariance matrix of the
detected target-corner-points. We also show how to utilize the accuracy measure
to improve tracking with a Kalman filter and to improve homography estimation
accuracy; (5) we show empirically that short base-line matching between two
frames is essential for jitter free augmentation and robust tracking; (6) direct
solution to 6DoF pose estimation problem from a given homography.

1.3 Nomenclature
Throughout this thesis, we will make use of several specific names and terms,
which are explained now. A target is the physical object that we want to detect
and track in a video sequence. The model-image shows an orthogonal projection
of target without rotation or translation with respect to the camera. It is given
to the system in the learning phase. The camera-image (or scene-image) shows
an arbitrary projective mapping of target as seen by the camera. In our case,
it is a frame from an input video sequence and becomes available at run-time.
A match or a correspondence connects two 2D image-points that correspond to
the same 3D physical point. We use both terms as synonyms. Degenerated
(or invalid) homographies correspond to physically impossible perspective trans-
formations. The opposite are non-degenerated homographies, which represent
rigid-body-transformations (see Figure 3.4).

1.4 Outline
This thesis is structured as follows. Chapter 2 starts by giving background infor-
mation helpful to understand the following chapters. It includes the introduction
of homography transformations as well as the DLT algorithm, which is employed
to compute homographies. Moreover, it explains how the RANSAC algorithm is
applied to robustly compute a homography from noisy data. Finally, the Kalman
filter is shortly described in the context of our tracking approach. Chapter 3 is
dedicated to target detection and robust homography estimation. It provides
the fundamentals for our tracking framework, which is presented in chapter 4.
The last step of the augmented reality pipeline is explained in chapter 5, it de-
scribes how to compute the 6DoF pose from a given homography so that we can
overlay the scene image with additional artificial information in a geometrically
consistent way. Chapter 6 gives an extensive evaluation of all the aforementioned
components and justifies certain design decision. Finally, we conclude in chapter
7. Appendix A shows further result images and plots.
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Chapter 2

Background

This chapter gives a brief overview of the fundamentals employed within this
work. First of all, we explain homographies and how to estimate them using the
DLT algorithm. We then move the focus to RANSAC, which is a well-known
approach for dealing with outliers. Finally, we present the Kalman filter, which
is a very prominent framework for probabilistic tracking.

2.1 Homography Estimation using DLT

This section explains the Direct Linear Transformation (DLT) algorithm for ho-
mography estimation. A homography is a projection from a plane onto another
plane. In particular, given a set of 2D to 2D point correspondences xi $ x0

i, the
homography H represents a projective transformation that maps the points xi

x1

x2

x3

x4

x�
4

x�
3

x�
2 x�

1

H

Figure 2.1: Schematic representation of a homography mapping. The homog-
raphy H maps the points xi to x0

i. We will refer to the right image as the model-
image showing an orthographic view the target and to the left image as the
scene-image. The dashed blue line represents the mapping of the target after
applying the perspective transformation.
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8 Chapter 2. Background

onto x0
i as visualized in Figure 2.2. The transformation is given by the equation:

x0
i = H · xi2

4
x0

i

y0
i

w0
i

3

5 =

2

4
h11 h12 h13

h21 h22 h23

h31 h32 h33

3

5 ·

2

4
xi

yi

wi

3

5 (2.1)

Note that this representation involves homogeneous coordinates. For notational
simplicity and without loss of generality, we will assume in the following w0

i =
wi = 1. Equation (2.1) is reformulated into A · h = 0. We refer the reader
to [HZ00] for the complete derivation. To construct A 2 R2n⇥9 and h 2 R9 we
proceed as follows: The vector h contains the entries of the homography H. Then,
each of the n point correspondences xi $ x0

i generates two rows in the matrix A
as shown below:

A · h = 0

2

66664

x0
1 y0

1 1 0 0 0 �x1x
0
1 �x1y

0
1 �x1

0 0 0 x0
1 y0

1 1 �y1x
0
1 �y1y

0
1 �y1

· · ·
· · ·
· · ·

3

77775
·

2

6666666666664

h11

h12

h13

h21

h22

h23

h31

h32

h33

3

7777777777775

=

2

6666664

0
0
...
...
...

3

7777775

(2.2)

Four point correspondences are sufficient to fully constrain H. Nevertheless, the
more correspondences are available, the less sensitive the homography estimation
becomes to measurement noise [GL11]. The solution of equation (2.2) is the
null-space vector of A that can be obtained by computing the singular value
decomposition (SVD) of A:

A = U · D · V> = U ·

2

64
d11 · · · 0
... . . . ...
0 · · · d99

3

75 ·

2

64
v11 · · · v91
... . . . ...

v19 · · · v99

3

75

>

(2.3)

If the singular values (positive diagonal entries) of D are arranged in descending
order, then h corresponds to the last column of V. Finally, H is obtained by
reordering h as described in equation (2.2).
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2.2. RANSAC 9

Algorithm 2.1: RANSAC for robust homography estimation using DLT

Input : putative feature-point correspondences.
Output: homography H, partitioning of correspondences into inliers and

outliers.
1 while i < N do
2 Sample random set of four correspondences.
3 Compute homography Hi from random sample using DLT.
4 Compute distance d? for each putative correspondence.
5 Compute number of inliers for Hi by number of correspondences for

which d? < ⌧d? .
6 end
7 Choose the homography Hi with the most inliers.
8 Reestimate the homography H using all inlier correspondences.

2.2 RANSAC

The previously presented DLT algorithm takes a set of feature-point correspon-
dences as input to compute a homography. The feature-point correspondences
can for instance be established using nearest-neighbor-search. In practice, the
resulting matches will not always be correct because of noise and should there-
fore be seen as putative matches. However, the DLT algorithm assumes that
these feature-point correspondences are correct, although this is rarely the case.
Also, the DLT algorithm is sensitive to wrong matches [HZ00] so it is a good
idea to first remove wrong matches. The RANSAC (Random Sample Consensus)
algorithm is a popular tool for estimating geometric models, e.g. homographies,
from datasets affected by noise. It partitions the putative matches into inliers
(correct matches) and outliers (wrong or ambiguous matches). Additionally, it
gives an estimate of the underlying geometric model. The algorithm works by
randomly choosing a sample of 4 correspondences and computing the correspond-
ing homography Hi. It then uses some distance measure d? to decide for each
putative correspondence whether it is consistent with the homography or not. If
this distance is smaller than a given threshold ⌧d? the match is considered to be
an inlier, if it is larger, the match is an outlier. These steps are repeated N times
and finally the algorithm returns the homography with the highest inlier count.
The resulting procedure is summarized in Algorithm 2.1. Section 3.3.2 presents
the details of our implementation.

9



10 Chapter 2. Background

Figure 2.2: Illustration of a Kalman filter used to track a moving object. The
black dots indicate the groundtruth movement of the object in a two-dimensional
space at discrete time steps. The red crosses indicate the corresponding noisy
measurements of the position, the blue crosses show to the predicted position
and the green crosses show the corrected positions. The respective covariances
are indicated by the ellipses that correspond to contours having one standard
deviation. Note how the corrected position (green) is interpolating between the
predicted (blue) and measured (red) positions.

2.3 Kalman Filter
This section introduces the Kalman filter, which is a probabilistic framework for
tracking targets under the assumption of Gaussian noise. Kalman filters have
been extensively covered by the available literature [FP02, BN06, JSM10, Dic10,
Hor86]. Here we only present it in the form as it was used within this work.
The general idea behind the Kalman filter is straightforward: A tracked target
is represented by an internal state xt and a covariance matrix ⌃

xt . For example,
the state vector can be composed of a position and a velocity.
The state xt is assumed to evolve over time t according to a dynamic model
D mapping xt�1 onto xt. On the one hand, the dynamic model D enforces a
consistent movement on the target, such as a constant velocity model, while on the
other hand it limits the influence of measurement noise ⌃Mt . The measurements yt

are related to the hidden state xt by a measurement model M. The measurement
model describes what parameters of the state xt are observable. For example,
given a single frame, a position is imminently measurable whereas a velocity is
not. The Kalman filter assumes both the dynamic- and measurement-model to
be affected by normally distributed noise with zero mean:

xt ⇠ N (D · xt�1, ⌃Dt) (2.4)
yt ⇠ N (M · xt, ⌃Mt) (2.5)

where ⌃Dt and ⌃Mt correspond respectively to the uncertainty of the dynamic
model and the measurement model.

10



2.3. Kalman Filter 11

At each time step t, the Kalman filter first estimates a prediction x�
t of the

current state. In a second step, the prediction is refined by incorporating the
measurement yt of the current frame to yield a corrected state x+

t . Specifically,
the predicted state x�

t and its covariance matrix ⌃�
xt

are computed using the cor-
rected state information from the previous time step and the underlying dynamic
model D by:

x�
t = D · x+

t�1 (2.6)
⌃�

xt
= D · ⌃+

xt�1
· D> + ⌃Dt (2.7)

where ⌃+
xt�1

is the corrected covariance matrix for the previous time step and ⌃Dt

models the uncertainty that measures how well the motion model is respected in
reality. The correction step is computed as follows:

x+
t = x�

t + Kt · (yt � M · x�
t )| {z }

Residual

(2.8)

⌃+
xt

= (I� Kt · M) · ⌃�
xt

(2.9)

where the Kalman gain Kt is calculated as:

Kt =
⌃�

xt
· M>

M · ⌃�
xt
· M> + ⌃Mt

(2.10)

(2.11)

where ⌃Mt corresponds to the measurement uncertainty at time t. Although the
Kalman filter equations are quite straightforward, the difficulty lies in finding
good values for the covariance matrices ⌃Mt and ⌃Dt [FP02]. This problem is very
application specific and requires deeper understanding of the underlying bases.
We will therefore postpone it to Section 4.5.3.
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Chapter 3

Detection

This chapter covers how target detection and robust homography estimation are
performed by our system. In particular, we want to decide whether a learned
target is present in a given scene image and, if yes, where it is precisely located.
We start by introducing state-of-the-art object-detection based on feature-point
correspondences. Then, we concentrate on implementation specific details of the
different components. Finally, we show how to compute the precise location of
the identified target in the scene image using robust homography estimation.

3.1 Overview

This section gives an overview of the basic processing pipeline underlying state-
of-the-art object identification and localization. We start by explaining the proce-
dure that can detect a given target in a given scene image. This task is separated
in three basic steps: (1) First, local feature-points are extracted from both the
model image and the scene image independently. The corresponding descriptors
are computed. (2) The feature-points are then matched, based on their descrip-
tors, to find putative correspondences between the model image and the scene
image. (3) Finally, it is verified that these tentative feature-point matches are
non-ambiguous and occur in a consistent geometric configuration.

This procedure can be generalized to be able to differentiate between multiple
different targets as we did in this work. In an offline-stage, we first construct the
descriptor database. Since our system is currently limited to planar targets, it
is sufficient to consider one single orthographic image per target. For each such
model image, we extract the feature-points and compute their descriptors, which
are then stored in the database with a reference to the original model image.
After establishing the database, we proceed to the actual detection part. The
descriptors of the feature-points from the scene image are matched against the
descriptor database. This results in a set of putative correspondences, which are

13
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Figure 3.1: Schematic visualization of the detection pipeline.

filtered by performing a Ratio-Test (3.3.1) and applying the RANSAC Algorithm
(3.3.2) for geometric validation. The remaining correspondences are then used to
estimate a homography that maps the detected target into the scene image. An
initial estimate is given by a normalized version of the DLT algorithm that can
be further refined by nonlinear optimization, namely the Levenberg-Marquardt
algorithm. The resulting detection pipeline is visualized in Figure 3.1.

In the following sections, we consider the different steps of the detection pipeline
in more depth.

3.2 Feature Detection and Descriptor Extraction
Our system relies on the recently proposed ORB [RRKB11] feature detector and
descriptor extractor. The ORB feature detector is based on FAST interest point
detectors and the descriptors are based on BRIEF [RD05, RD06, CLO+12]. As
the authors state [RRKB11, Low04], ORB is two orders of magnitude faster than
SIFT, while performing equally well. ORB is part of the OpenCV library [Bra00].
This makes it a very promising choice for our implementation.

However, while working with ORB, we noticed a few peculiarities. When observ-
ing the spatial distribution of extracted ORB features, we noticed cluster-like
distributions around certain regions. This is shown in Figure 3.2. Inside these
clusters, the feature-points are spatially very close to each other, which might
lead to ambiguous descriptor matches. Upon analyzing these phenomenon more
in depth, we came to the following conclusions:

14
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Figure 3.2: Left: extraction of ORB feature-points. The color indicates the oc-
tave from which the feature-point was extracted. The diameter shows the mean-
ingful neighborhood. One recognizes the formation of clusters (dashed ellipses)
as well as the (pairwise) different octave-membership of the feature-points inside
a cluster. The grid indicates 10 px in each dimension. Right: all descriptors from
one octave are matched against descriptors from scaled image. The height of a
bar corresponds to the number of matches per octave from the original image,
the color designates the octaves from the scaled image.

1. The feature-points inside a cluster origin from different scaling levels (oc-
taves) of the image. This makes sense since the ORB feature extractor uses
a scale pyramid of the image to produce multi-scale features.

2. The descriptors of the feature-points inside a cluster are distinctive enough
to allow non-ambiguously matches over multiple scales. There are 8 octaves,
each one scaled by the factor 1.2.

The first point becomes immediately clear by visually analyzing the octave mem-
bership of the extracted feature-points. The results can be seen in Figure 3.2.

For the second point, we performed descriptor matching between an image
and a scaled version of the same image at multiple different scalings s. The
Hamming-Distance was used as distance measure. All matches with a distance
larger than a threshold ⌧ were deleted.

If the descriptors inside a cluster are sufficiently discriminative, then the de-
scriptors originating from one scaling level n in the original image should ideally
be matched exclusively with descriptors from one scaling level m in the scaled
image. Indeed, we could observe such a result.

The effect becomes less important if the chosen threshold value ⌧ is too high.
Empirically, we found 55bit to be a good threshold value for the 256bit ORB
descriptors. The reader is also referred to Appendix A for more results.

15



16 Chapter 3. Detection

3.3 Descriptor Matching and Outlier Removal
In this section, we describe how our system performs descriptor matching and
outlier removal. At this stage the descriptor database of the target images is
available as well as the descriptors from the camera-image. Descriptor matching
is performed by computing the nearest neighbors using a brute-force strategy
from the OpenCV library [Bra00]. Even though ORB performs almost as well
as SIFT, which is known to be a very strong descriptor, we still have to deal
with wrong matches before robustly estimating the homography [RRKB11]. The
identification and removal of wrong matches is performed in two steps: (1) We
use the well known ratio-test as proposed by [Low04]; (2) we employ RANSAC,
which removes all the matches that cannot be explained by a consistent geometric
configuration. Both outlier removal steps are now explained in more detail.

3.3.1 Ratio Test

The ratio-test allows to distinguish reliable matches from unreliable ones. For
each descriptor x from the scene image we find the two nearest neighbors x1 and
x2 originating from the training database. Then the ratio of the two distances
gives insight in how similar the descriptors are and hence how reliable the match
is. [Low04] recommends to classify all matches as outliers if the distance ratio is
greater than 0.8:

f =
dHamming(x, x1)

dHamming(x, x2)

(
if f < 0.8, classify as inlier
if f > 0.8, classify as outlier

(3.1)

According to Lowe, this simple test removes 90% of wrong matches while elimi-
nating less than 5% of correct matches.

3.3.2 RANSAC

Our implementation of RANSAC follows to a great extend the description given
in [HZ00] (p.123). We present our approach to the sample selection, which guar-
antees non-degenerate estimation results. In Chapter 6, we compare our imple-
mentation to the original one given in [HZ00].

Distance Measure

We use the symmetric transfer error to compute the error of a correspondence
from a homography H:

d? = d(xi, H�1x0
i)
2 + d(x0

i, Hxi)
2 (3.2)

16



3.3. Descriptor Matching and Outlier Removal 17

Figure 3.3: Visualization of the extrapolation problem. The accuracy of the
transformed points is indicated by the covariance matrices. (See Section 4.5.3).
The ellipses illustrate the covariances. The circles show the points used to com-
pute the homography.

Extrapolation Problem An estimated homography accurately maps
points from inside the region defined by the points used to compute it, but
the accuracy will progressively deteriorate with the distance to this region.
This effect is visualized in Figure 3.3.

Sample Selection

In each RANSAC iteration, a random sample of four correspondences is chosen
to compute a homography Hi. The sample selection procedure has a direct influ-
ence on the quality of the estimated homography. We want to avoid degenerate
solutions by disregarding points that are collinear or in direct proximity of each
other. Such situations will lead to numerical instabilities during homography es-
timation and are not unlikely, as we have seen in Section 3.2. Also, the selected
points should have a good spatial distribution over the target in order to avoid
the extrapolation problem. Finally, the homography mapping of the model-image
must be convex. To obtain the mentioned characteristics, each random sample
(consisting of four correspondences) must fulfill the following checks:

Collinearity While picking the 4 correspondences, we check after selecting each
random match whether the newly selected point and the already chosen ones are
collinear or not. We start the check as soon as we choose the third random point.
Since a perspective transformation preserves parallelism, it is of no importance
whether we perform this check on the model- or the scene-image points. Thus

17



18 Chapter 3. Detection

we randomly choose four correspondences x0
i $ xi one after the other. When the

third point p3 is chosen, we control if the three points (p1, p2, p3) are collinear.
When choosing the fourth point, we check if the points (p1, p2, p4) and (p1, p3, p4)
are collinear. To perform the test whether three points pi = (xi, yi), i 2 {1, 2, 3}
are collinear we construct the matrix:

A =

2

4
x1 y1 1
x2 y2 1
x3 y3 1

3

5 (3.3)

If the determinant of A is zero, then the points are collinear [CG67]. If the test
shows that the newly selected point is collinear with the existing ones, a new
random match is immediately sampled until the criterion is met. If no other
point is available, i.e. all the putative matches are collinear, the ransack routine
returns without a result.

Spatial Distribution To limit the effect of the extrapolation problem and to
avoid spatially too close matches, each newly selected random point must be at
least 9 px apart from the already picked random points. This value was cho-
sen as it corresponds to the radius of the FAST feature extractor used by ORB
[RRKB11]. As we have seen (Figure 3.2) it is not unlikely that two matches are
spatially very close, i.e. less than a few pixels. If this happens, then two rows (or
more) of the matrix A will be very similar, which results in an under-constrained
homography estimation problem. This will not give a meaningful solution. Thus,
it is crucial to avoid such a situation.

Rigidity Constraint After the four sample correspondences x0
i $ xi are cho-

sen, we can control whether the matches reflect a rigid-body transformation. The
shape formed by four point correspondences either forms a fully convex shape or
a shape with one concavity. For a homography to correspond to a rigid-body
transformation it must map a convex shape to another convex shape and a shape
with one concavity to another shape with one concavity. Additionally, in the
case of shapes with one concavity, the point correspondences have to be correctly
ordered for the concavity to be at the same place. According to [MBSS10], it is
sufficient to consider only the direction of the turns along the path formed by the
four points. The corresponding directions must be the same along the paths in
the model-image and the scene-image. In particular, we consider the cross prod-
uct of the vectors Vn and Vn+1, which are respectively formed from point xn to
xn+1 and from point xn+1 to xn+2. The direction of the turn is then given by the
sign of the cross product Vn ⇥Vn+1, which must be the same for corresponding
points in both images. The rigidity constraint is then expressed by:

sign(Vn ⇥ Vn+1 mod 4) = sign(V0
n ⇥ V0

n+1 mod 4) (3.4)

18



3.3. Descriptor Matching and Outlier Removal 19

Figure 3.4: Illustration of a homography mappings. Left: degenerated mapping
Right: rigid-body transformation.

Convexity Constraint Because of the extrapolation problem, it cannot be guar-
anteed that a homography Hi describing a rigid-body transformation for four
sample points also describes one for the four corner points of the model-image.
Thus, we apply the computed Hi to the corner-points of the model-image and
control whether the projected corners still form a convex quadrangle. Since the
convexity constraint is a special case of the rigid-body constraint, we can again
make use of equation (3.4). Figure 3.4 shows an example of a degenerated ho-
mography mapping that is anticipated by this approach.

As this approach is no longer fully random, we will refer to it as guided -sample-
selection as opposed to random-sample selection.

Number of Samples

The number N of samples is recomputed in each RANSAC iteration:

N =
log(1 � p)

log(1 � es)
(3.5)

where p = 0.995 is the probability that at least one of the random samples is free
from outliers, e is the probability that a randomly selected correspondence is an
inlier and s = 4 is the minimum number of correspondences needed to compute a
homography. It is equivalent to interpret e as the current best inlier ratio, which
is recomputed whenever we find a homography with a larger consensus set, i.e. a
higher inlier count.

Once we have identified all the outliers from the putative matches, we robustly es-
timate a homography H based on the inlier matches. This procedure is described
in the next section.
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20 Chapter 3. Detection

3.4 Homography Estimation
In this section, we consider the problem of homography estimation. As we have
seen in Section 2.1, a homography H projects a set of points xi of one plane onto
a set of points x0

i from another plane. See Figure 2.2 for a visualization. In
the following we present two approaches for homography estimation: First, the
normalized DLT algorithm, which gives a direct linear solution and second, an
iterative non-linear estimation based on the Levenberg-Marquardt algorithm.

We will now motivate why we use these two different approaches. The advantage
of DLT is a direct, linear (and thus unique) solution. If normalization is applied,
the DLT does give very good results [HZ00]. The downside of the DLT algorithm
is that it minimizes the algebraic error kA · hk. The algebraic error is related
to, but is not quite the same as a geometric error, which we actually want to
minimize. In order to minimize an arbitrary geometric error function, one uses
more elaborated iterative optimization algorithms. These methods usually need
a good initialization. If not, the optimization procedure can get stuck in a non-
optimal local minimum. A good initialization is usually given by a linear method
such as the normalized DLT. We use the solution of the DLT algorithm as a first
solution and LM for the final polish.

3.4.1 Direct Linear Method: Normalized DLT

Here we present the normalized DLT for 2D homographies. Data normalization
gives dramatically better results [HZ00]. Instead of directly applying the DLT
algorithm to the point correspondences xi $ x0

i, a normalization process is first
applied. In particular, the points are translated and scaled so that their centroid
corresponds to the origin and their average distance to the origin is

p
2. This

transformation is applied to each point set independently. Thus we obtain a
transformation T that maps the points xi to x̃i and a transformation T0 that
maps x0

i to x̃0
i. We have:

T =

2

4
s 0 �tx
0 s �ty
0 0 1

3

5 (3.6)

with
t = (tx, ty) =

1

n

X

i

(xi, yi) (3.7)

s =

p
2

1
n

P
i

p
(xi � tx)2 + (yi � ty)2

(3.8)

where n is the number of points.
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3.4. Homography Estimation 21

Figure 3.5: An exemplary illustration comparing the results of the normalized
and unnormalized DLT algorithm. The polygons correspond to the contours of
the transformed target in the scene image. The groundtruth is visualized in black,
the normalized result in blue and the unnormalized in red. The difference is less
notable if the feature-points (black circles) used to compute the homography are
uniformly distributed (compare left and right).

The transformation T0 is constructed in the same way but we use x0
i = (x0

i, y
0
i)

instead of xi = (xi, yi). After the normalization step, the DLT algorithm is
applied to the resulting point correspondences x̃i $ x̃0

i. This yields a homography
H̃ that is again denormalized to obtain the desired homography H:

H = T0�1 · H̃ · T (3.9)

Figure 3.5 compares the normalized and unnormalized DLT algorithm. It also
visualizes the influence that the geometric distribution of the feature-points has on
the homography estimation and how the normalized DLT is more robust against
such influence.

3.4.2 Iterative Non-Linear Method: Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm is a non-linear iterative minimization
method [HZ00] (p.600). Given an initial solution, a set of parameters is itera-
tively refined in order to minimize a certain cost function. Like any non-linear
iterative optimization algorithm it has certain disadvantages compared to linear
methods such as the previously presented normalized DLT algorithm. In gen-
eral, iterative methods are slower due to their iterative nature. Also they need a
good initialization in order to converge and to end up in a local minimum. The
main advantage of non-linear approaches is a better solution in the sense that
they minimize over a more meaningful error function. For example, in our case
we minimize the symmetric transfer error (Equation 3.11, [HZ00] p.94), which
has a direct geometric interpretation, whereas the DLT algorithm minimizes the
algebraic error, which is not geometrically meaningful. Linear methods still give
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22 Chapter 3. Detection

useful results as we have seen in Section 3.4.1. We use the result from the normal-
ized DLT as initialization for our non-linear optimization method. As parameters
we choose the entries of H, which are stored in the parameter vector h. These
parameters are optimized using the cost function given by:

kX � f(h)k2 (3.10)

which is equal [HZ00] (p. 112) to the symmetric transfer error:
X

i

d(xi, H�1x0
i)
2 + d(x0

i, Hxi)
2 (3.11)

where X is a 4n-vector made up of the inhomogeneous coordinates of the points
xi followed by the inhomogeneous coordinates of the points x0

i. The function f
relates the parameters h to the costs:

f : h 7! (H�1x0
1, . . . , H

�1x0
n, Hx1, . . . , Hxn) (3.12)

For the actual implementation of Levenberg-Marquardt we relied on the well-
known Eigen library for linear algebra [GJ+10]. The Levenberg-Marquardt method
is provided with a vector fvec representing equation (3.4) and its Jacobian fjac
with respect to the parameters h. The vector fvec is given by:

fvec =

2

666666666666666664

x0
1 � x̃1

y0
1 � ỹ1

...
x0

n � x̃n

y0
n � ỹn

x1 � x̃0
1

y1 � ỹ0
1

...
x1 � x̃0

1

y1 � ỹ0
1

3

777777777777777775

(3.13)

where x̃i = (x̃i, ỹi) and x̃0
i = (x̃0

i, ỹ
0
i) are the inhomogeneous coordinates of H�1x0

i

and Hxi respectively. In this section xi = (xi, yi) and x0
i = (x0

i, y
0
i) represent

the inhomogeneous coordinates of the measured points. The Jacobian fjac is
computed as:

fjac =
@fvec

@h
(3.14)

Similar to the DLT algorithm, we can again apply data normalization. However,
we could not observe a similar improvement as we did in the case of the normalized
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Figure 3.6: Illustration of consecutive LM iterations (from left to right and top
to bottom) starting from the identity homography. It shows that the normal-
ized LM (green) converges faster than the unnormalized LM (red). Eventually,
both solutions become visually indistinguishable from the solution given by the
normalized DLT (blue). The circles show the inliers used to compute the homo-
graphies. More extensive evaluations on DLT and LM are given in Section 6.4.

DLT algorithm. To our findings, data normalization has little to no impact on the
accuracy of the LM estimator. We observed, however, a faster convergence if data
normalization is performed. Figure 3.6 illustrates this observation. For a better
visualization, we used the identity homography for initial parameter values. In
practice, one would use the solution given by the normalized DLT algorithm.
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Chapter 4

Tracking

Tracking considerably increases the robustness and accuracy of our system by
exploiting temporal coherencies. During detection, we performed wide-baseline
matching, i.e. establishing correspondences between a pair of images taken from
different viewpoints. For tracking, we will also consider short-baseline matching,
which finds correspondences between a pair of images taken from similar view-
points as it is the case for consecutive frames in a video sequence. In general,
short-baseline matching is easier to solve than wide-baseline matching: a quite
good estimation for the location and appearance of the target is already given
in the previous frame. This chapter explains how the system benefits from this
additional information by using a hierarchical matching approach. Finally, the
tracking setup imposes a smooth and consistent dynamic behavior on the tracked
target by employing a Kalman filter with underlying constant-velocity model.

4.1 Overview

Our tracking approach aims to maximize the number of correct correspondences
between the model-image and camera-image. This is achieved through a hier-
archical matching strategy using different matching techniques: (1) Inter-frame
matching (see Subsection 4.3), which finds corresponding feature-points in two
consecutive camera-images from the input video sequence; (2) warped-target match-
ing (see Subsection 4.3), which finds correspondences between the current frame
and the model-image under perspective distortion; (3) database matching (see
Subsection 3.2) finds matches between the camera-image and the model-image
stored in the database. This is the same method as used during detection. Table
4.1 gives an overview of the matching hierarchy.

Since our goal is to establish feature-point correspondences between the current
camera-image and the model-image we need to remap matched feature-points
originating from the previous frame or from the warped-target frame back into
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26 Chapter 4. Tracking

Matching Appearance Location Homography
1. Inter-Frame same same depends
2. Warped-Target differs similar recent
3. Database differs differs not needed

Table 4.1: Overview of the matching hierarchy. The characteristics of corre-
sponding feature-points and the necessity for prior knowledge on the homography
are compared.

the original model-image space. This remapping step requires careful implemen-
tation (see Subsections 4.3 and 4.4) to avoid error accumulation and likely drift
artifacts.

A value is assigned to each feature-point from the current camera-image that
states the current knowledge about its correspondence situation: (0) The feature-
point is considered to be an outlier, there is no corresponding point on the target;
(1) the point is an inlier and the corresponding point on the target is known; (2)
a candidate for this point was found on the target, but geometrical verification
is still needed; (3) we did not yet find a match for this point. After extracting
the feature-points from a new frame, each point is assigned the value 3. The
values are updated while the feature-points are handed down through the match-
ing hierarchy in anticipation of finding a valid correspondence. As soon as a
correspondence for a feature-point is found on one level, this point is no longer
considered in the following matching levels. This makes sense if we assume that
the earlier levels give more reliable results than the later ones.

We now explain the tracking pipeline, i.e. the processing of each frame (com-
pare Figure 4.1). We start by extracting feature-points and computing their
descriptors from the current camera-image. These will serve as input to the tar-
get detection routine as explained in chapter 3. The tracking system is initialized,
as soon as the detector has identified a target. For each detected target, homog-
raphy estimation is performed on the database matches provided by the target
detection routine. Finally, the estimated homography is used to initialize Kalman
filtering and to draw the graphical overlay. Then, we proceed to the next frame:
For each tracked target, we only consider feature-points lying in the area that is
predicted by the Kalman filter. Now, the matching hierarchy comes into play: if
the target detector did not identify a different target than in the previous frame,
we perform inter-frame matching followed by warped-target matching. Match-
ing against the database is always performed as a last step. Notice that object
detection must not necessarily yield a solution: if no object is detected it is as-
sumed that matching against the database failed but inter-frame matching and
warped-target matching can still yield meaningful results. Those feature-points
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Figure 4.1: Overview of the tracking pipeline for one target.
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28 Chapter 4. Tracking

that were not yet considered for matching, i.e. those that are spatially not close
to a previously detected target, are matched against the database in order to
detect new targets, which become visible to the camera.

After establishing the correspondences, we iterate the following two steps: (1) a
homography is estimated using DLT based on the found matches and optimized
with LM; (2) the inliers of the estimated homography are recomputed using the
symmetric transfer error (eq. 3.2). These two steps are repeated until the num-
ber of inliers stays constant. A convexity test (see Subsection 3.3.2) is used to
check if the resulting homography is a valid rigid-body transformation. In the
next step, the accuracy of the estimated homography is computed. In particular,
we are interested in how accurately the corners of the target are localized in the
camera-image. Section 4.5.3 explains how this is done. Knowing the accuracy
of the detected target points is not only a valuable input for the Kalman filter,
it also helps to decide whether it is safe to use the estimated homography for
mapping feature-points from the camera-image to the model-image during inter-
frame matching in the following frame. This aspect is explained in more detail
in Section 4.3.

4.2 Grid Matching

To exploit spatial coherencies between two images, we introduce grid matching.
For inter-frame matching and warped-target matching, we assume that corre-
sponding image points are spatially close together. Thus, it is sufficient to per-
form matching only on nearby feature-points within a certain search radius r. For
efficiency, the image space is discretized using a 2D grid. The side length of each
square cell in the grid is r. Assume we want to match a feature-point x0 from the
current camera-image against feature-points xi from the previous camera-image.
First, we place identifiers for each point xi in its 3x3 cell neighborhood. Finding
a match for x0 is then performed by considering only those feature-points whose
identifies are located in the same cell as x0. The obtained candidates are further
refined: They have to be within distance r of x0 and they have to originate from
the same scale octave as x0 (we assume the target is visible at the same scaling in
both images, also compare Section 3.2). The final match is the nearest neighbor
according to the Hamming distance between their descriptors. As each feature-
point is matched against few, spatially-close candidates, the likelihood of a false
match is reduced, assuming the correct candidate is in the set of candidates. The
procedure is visualized in Figure 4.2.

28



4.3. Inter-Frame Matching 29

Frame t+1Frame t

x1 x1

x2x2

x'2

Figure 4.2: Illustration of grid matching. Left: the identifiers of previous
feature-points x1 and x2 are placed in their 3x3 neighborhood. Right: the iden-
tifiers of the potential candidates for a match are contained in the same cell as
x0
2. The dashed circle indicates the search radius r.

4.3 Inter-Frame Matching

To our findings, the most reliable matches are obtained between two consecutive
input video frames. The position and appearance of corresponding feature-points
vary inherently little, which greatly simplifies the task of matching. This approach
can also be understood as a frame-to-frame feature-point tracker for features that
origin from the same target as detected in the previous frame. Thus, inter-frame
matching is only performed if no different target than the previous one is de-
tected. The correspondences xt $ xt�1 between two consecutive frames are
established using grid matching. Actually, we are not interested in inter-frame
correspondences, but in correspondences between the current camera-image and
the model-image: assuming the existence of a match xt�1 $ x0 with x0 being
a point in the model-image, we can simply transfer the match to the current
feature-point xt, which gives us the new correspondence xt $ x0.

Since the model-image and the target in the current camera-image can have dra-
matically different appearances, it is by no means guaranteed that every matched
point xt�1 also has a corresponding point in the model-image. In fact the number
of feature-points that have no corresponding match in the model-image largely
outnumbers those that do. Thus, even though we might have a large number of
correspondences between two frames, we cannot necessarily make use of them.
Unless the homography Ht�1 from the previous frame is known with sufficient
accuracy, then we can use the inverse of Ht�1 to map the matched points xt�1

back into the model-image. The parameter ⌧HU defines the threshold that decides
when a homography estimation is considered too uncertain. (see Section 4.5.3).
The threshold should be low enough to avoid drifting effects. If the uncertainty of
the previous homography is too important, we cannot find a match and continue
with the next level in the hierarchy.
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Figure 4.3: Illustration of warped target matching under perspective distortion.
Left: camera image from UCSB [GHT11] video sequence. Right: warped model-
image using previously estimated homography.

4.4 Warped-Target Matching

The idea behind warped-target matching is to become robust against significant
perspective distortion. As most descriptors, ORB is not invariant to perspective
distortion. By warping the model-image into a similar position as the target in
the camera-image, this limitation is successfully bypassed. A similar position
is obtained by using an estimated homography from a recent previous frame. A
more recent homography will better correspond to the perspective transformation
of the target in the current frame. We extract the feature-points and compute the
descriptors that are then matched against the descriptors from the current frame.
If the last detected homography is not older than a few frames, the warped target
should be geometrically close to the target in the current camera-image. Thus,
we can again employ the grid matching approach. If this is not the case, greedy
matching will be used instead. When a new match is found for a feature-point
that was already successfully matched in the previous frame, it is only updated if
the Hamming-distance of the new match is smaller than the one of the previously
found match. A visualization for warped target matching is given in Figure 4.3.
Furthermore, model-points that are not visible in the camera-image will also not
be visible in the warped-target image, limiting the number of potential matching
candidates. Unlike inter-frame matching, this method does not need to cope with
drifting problems: we use a homography H to warp the model-image and establish
matches between the camera-image and the warped model-image. If a feature-
point in warped model-image was matched, we use H�1 to map the feature-point
back to the model-image. This procedure introduces no errors that are due to
erroneous homography estimation.
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4.5 Kalman Filter Tracking
Our next and final tracking component is a Kalman filter. The contribution of
the Kalman filter is two fold: First it helps to minimize jitter from the detected
tracks due to its smoothing characteristics. Second, it allows to bridge over single
frames for which no homography could be detected. To our findings, this happens
frequently when strong motion blur makes it impossible to extract feature-points.
When designing a Kalman filter, one needs to decide over what parameters to
apply the filter. The entries of the homography seem to be an obvious choice,
however this choice turns out to be non-optimal as the entries of the homography
do not allow an imminent geometric interpretation. This makes it difficult to
design a dynamic model for these parameters. Since a homography is fully defined
by four points we choose to apply the Kalman filter directly to the four corner-
points of the target. In particular, we use four Kalman filters independently, one
for each corner. This alternative allows a simple formulation of the underlying
dynamic model but ignores the geometric correlation between the corner points.

4.5.1 State and Observation Vectors

The state vector X and the observation vector Y are defined as follows:

X = (px, py, vx, vy)
> (4.1)

Y = (px, py)
> (4.2)

The state X contains the position p = (px, py)> and the velocity v = (vx, vy)> of
the corner point. In a single frame, we can only observe the position of a corner,
not the velocity. The measurements cm of a corner position c is obtained by
first estimating a homography H as described in Section 3.4 and then compute
cm = H · c = (cm

x , cm
y , cm

w )>, which gives (px, py)> = (cm
x /cm

w , cm
y /cm

w )>.

4.5.2 Linear Dynamic Model

We approximate the movement of the target with a constant velocity model. The
dynamic model D is given by the following matrix:

D =

2

664

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

3

775 (4.3)

where dt is the time difference between two consecutive frames. We assume dt
to be constant as we apply our system to video sequences with constant frame
rates. In a real-time system, dt has to be recomputed for each new frame.
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The measurement model describes which parameters of the state vector can
directly be observed or measured. In our application, we can only measure the
position of the target corners, not the velocities. This is reflected in the measure-
ment model matrix M:

M =


1 0 0 0
0 1 0 0

�
(4.4)

The accuracy depends on a lot of factors, including the number of points, the
correctness of the matches as well as the geometric distribution of the points.
For example, if all the points lie on one line, then the estimated homography will
most probably be degenerated. In the next section, we will see how to express
this uncertainty.

4.5.3 Measurement Uncertainty

The goal of this section is to calculate the uncertainty ⌃Mt associated with a point
transformed under a given homography H. This uncertainty will serve as value for
⌃Mt in the Kalman filter. Specifically, we want to compute a covariance matrix
for x0

i where x0
i = H · xi. We use the approach from [HZ00] as follows:

1. Estimate a homography H given point correspondences x0
i $ xi.

2. Compute the Jacobian matrix J = @X0/@h.

3. Compute the covariance matrix of h given by ⌃
h

= (J>⌃�1
X0 J)

+.

4. Finally, the covariance matrix for the point x0 is given by ⌃
x

0 = J
h

·⌃
h

· J>
h

We shortly introduce the above used notation: X0 is the set of all points x0
i. The

covariance matrix ⌃
X

0 corresponds to the measurement uncertainty of the points
xi. The pseudo inverse X+ is defined as:

X+ = X+A = A · (A> · X · A)�1 · A> (4.5)

For our specific case, we can assume that the points xi are known exactly, as they
correspond to the corners of the target image. This allows us to use the simpler
case of error in the scene image only. Further, we assume that points x0

i have one
pixel standard deviation. This means the covariance matrix ⌃

X

0 is the identity
matrix.

We now present the procedure to actually perform the aforementioned steps.
First, we estimate H as explained in Section 3.4 and normalize it so that kHk2 = 3.
Then, we compute the Jacobian matrix J = @X0/@h where the vector h 2 R9

contains the entries of H. A formula for @x0
i/@h is given by:

Ji = @x0
i/@h =

1

w0
i


x>

i 0> �x0
i · x>

i

0> x>
i �y0

i · x>
i

�
(4.6)
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Figure 4.4: Illustrations of the Kalman filter in action. The red polygon shows
the current measurement, the blue one is the prediction from the Kalman filter
and the green one corresponds to the corrected state. The covariances ⌃

x

0 = ⌃Mt ,
⌃�

x

0
t

and ⌃+
x

0
t

are visualized with red, blue and green ellipses respectively. The
major diameter of the ellipse is directly proportional to the first eigenvalue of
the corresponding covariance matrix. To make the covariances easily visible, we
choose a scaling factor of 6. First row, from left to right: (1) Good measurement,
prediction and correction. (2) No homography was detected, the corrected state
corresponds to the predicted one. (3) The corrected state is interpolated between
the predicted one and the current measurement. Second row: sequence of three
consecutive frames. In the middle frame, the estimation of the homography,
i.e. measurement, is inaccurate. The Kalman filter successfully compensates the
inaccuracy.

Note that we use homogeneous coordinates, in particular we have xi = (xi, yi, 1)>

and x0 = (x0
i, y

0
i, w

0
i)

>. Then, the complete Jacobian J is obtained by stacking the
matrices for all points xi on top of each other so that J = (J>

1 , ..., J>
i , ..., J>

n )>.
As motivated in [HZ00], we can now compute the covariance matrix ⌃

h

using a
Householder matrix A corresponding to the vector h. As we assumed ⌃

X

0 to be
the identity matrix, the covariance ⌃

h

is given by:

⌃
h

= (J>J)+A1 = A1(A>
1 (J>J)A1)�1A>

1 (4.7)

where A1 denotes the first 8 columns of the Householder matrix A given by

A = I� 2 · vv>

v>v
(4.8)

where I 2 R9⇥9 is the identity and v = h + khke9 with e9 = (0, ..., 0, 1)> 2 R9.
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34 Chapter 4. Tracking

Finally, we can compute the covariance matrix for the points x0 given by the
formula:

⌃
x

0 = J
h

⌃
h

J>
h

(4.9)

Figure 4.4 visualizes a few examples. We can now directly use this covariance
matrix to decide if the estimated homography is accurate or not: For each corner
point, we test if the first eigenvalue of its covariance matrix exceeds a threshold
⌧HU . If one corner fails the test, the estimated homography is classified as too
inaccurate. The test is performed corner wise to guarantee that all corner points
are mapped accurately. Figure 4.4 (bottom, middle) shows an example of an inac-
curate homography for which one corner failed the test. This information is used
during inter-frame matching to decide if the previously estimated homography
can be used to back-project camera-image points into the model-image.
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Chapter 5

Graphical Overlay

This chapter describes how to overlay the scene image with additional informa-
tion, such as 3D objects (See Figure 5.1). This corresponds to the augmentation
step in the pipeline of our augmented reality system. The goal of this chapter is
to compute the pose of the target inside the scene image relative to the camera.
By pose we denote a 6DoF vector composed of the rotation and translation of the
target, which can be used as input by a subsequent OpenGL routine. The overall
approach consists in decomposing a given homography H into a rotation matrix
R and a translation vector t. We will also need the intrinsic camera parameters
K, which are determined in an offline camera-calibration step.

Figure 5.1: Illustrations of the graphical overlay. In our case, we draw a 3D
cuboid on the middle of the detected target object. The pose computations
are based on the homography represented by the rectangle. The colors denote
different targets.
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36 Chapter 5. Graphical Overlay

5.1 Overview

A homography H describes a mapping of points from a 2D image plane onto
another 2D image plane. Homography estimation has been covered to a great
extend in Section 2.1 and 3.4 . However, at this point, we are more interested in a
projection that projects 3D model points Xi onto a 2D image plane. Since we are
working with planar targets we cannot directly apply the DLT algorithm as we
did for homography estimation. This is due to numerical instabilities described
in [HZ00] (pp. 179-180). Thus our approach relies on decomposing the already
estimated homography H. The resulting closed-form solution can again serve as
a starting point for an iterative algorithm such as Levenberg-Marquardt.

5.2 From Homography to Pose

We now describe our approach to homography decomposition in order to recover
the target pose. We first introduce the notation used in this section. A pose
Pi = [Ri|ti] 2 R3⇥4 consists of a rotation matrix R 2 R3⇥3 and a translation
t 2 R3

i . Together with the corresponding camera-matrix Ki the pose Pi projects
a 3D point X = (X, Y, Z, 1)> to its 2D counterpart x = (x, y, w)>. This relation
is formalized by:

x = Ki · Pi · X (5.1)

Note that x and X are given in homogeneous coordinates. We now assume that
X lies on the surface of a target. Then the model-image points x and scene-image
points x0 are defined as:

x = K0 · [R0|t0] · X (5.2)

x0 = K1 · [R1|t1] · X (5.3)

where K0 and K1 correspond to the cameras recording the model-image and the
scene-image respectively. Similarly, [R0|t0] and [R1|t1] describe the rotation and
translation of the cameras relative to the target. We recall that a homography H
(defined up to a scale factor �) maps a point x onto x0.

x0 = � · H · x (5.4)

The goal now is to find a relation between the known homography H and the pose
P1 = [R1|t1] in order to express R1 and t1 in terms of the entries of H. The model
images are recorded under controlled conditions, hence the pose P0 is known. In
particular, we used an orthogonal projection K0 along the Z-dimension as well as
[R0|t0] = [I|0], which allows us to express X in terms of x:
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x = K0 · [I|0] · X
2

4
x
y
w

3

5 =

2

4
1 0 0 0
0 1 0 0
0 0 0 1

3

5 ·

2

664

X
Y
Z
1

3

775

=

2

4
X
Y
1

3

5

(5.5)

Without loss of generality, we further assume the model plane is on Z = 0 in the
world coordinate system. We denote the ith column of R1 by ri. We find:

x0 = K1 · [R1|t1] · X

= K1 ·
⇥
r1 r2 r3 | t1

⇤
·

2

664

X
Y
0
1

3

775

= K1 ·
⇥
r1 r2 | t1

⇤
·

2

4
X
Y
1

3

5

(5.5)
= K1 ·

⇥
r1 r2 | t1

⇤
· x

(5.4)
= � · H · x

(5.6)

We denote H by
⇥
h1 h2 h3

⇤
, then we have:

� ·
⇥
h1 h2 h3

⇤
= K1 ·

⇥
r1 r2 | t1

⇤
(5.7)

Since the camera matrix K1 is known from an offline calibration step, the final
pose P = [R|t] =

⇥
r1 r2 r3 | t1

⇤
can readily be computed:

r1 = ��1 · K�1
1 · h1

r2 = ��1 · K�1
1 · h2

r3 = r1 ⇥ r2

t = ��1 · K�1
1 · h3

(5.8)

The computation for r3 is motivated by [Zha00] and [LF05] as follows: As R is
a rotation matrix, its columns must be orthonormal. Hence, we can compute r3
as the cross product of r1 and r2. Finally, � is chosen to normalize the Euclidian
length of the columns ri to 1.
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5.2.1 Dealing With Noise

Of course, because of noise, the estimated homography H is not an exact solution.
Hence, the pose estimation is also affected by noise. The direct effect is that the
estimated rotation matrix R is not orthonormal and thus it does not have the
properties of a true rotation matrix.

In a first step, we consider the normality of the columns ri. Ideally, each
column ri should validate krik = 1. A naive method would be to normalize
each column individually. This is a non-optimal as it results in shearing effects
and corrupts the scaling. A better approach is given by equation (5.8). As a
homography is only defined up to a scale, we can make use of the scaling factor
� for our task. In particular, � should be the same for r1, r2 and t to avoid the
aforementioned effects. Ideally, one would choose � = kK�1

1 · h1k = kK�1
1 · h2k.

As this equality generally does not hold, we compute � as the average of both
norms:

� =
kK�1

1 · h1k + kK�1
1 · h2k

2
(5.9)

In a second step, we consider the orthogonality of the columns ri. [Zha00] pro-
poses a method to find the best rotation matrix Rc so that Rc · R�1

c = I. "Best" is
interpreted as the smallest Frobenious norm of the difference Rc�R. The method
works as follows. First, we compute the SVD decomposition of R = U · S · V>.
Then Rc is given by Rc = U · V>. The resulting pose Pc differs from the original
pose P as visualized in Figure 5.2. A qualitative evaluation is given in Chapter 6.

5.2.2 Orientation Preserving

We now consider the question of orientation preservation. The target is oriented
towards the camera in both the model-image as well as the scene-image. The cam-
era is always on the same side of the planar target. This constellation should be
preserved during pose estimation. This is guaranteed if the homography determi-
nant is positive [HZ00] (pp. 522-523). Hence, before decomposing the homograph
matrix into rotation and translation, we have to make sure the determinant of
the homography H is positive. Specifically, we normalize the homography so that
its determinant equals 1. The normalized homography Hn is obtained by

Hn = 3
p

det(H)
�1

· H (5.10)

As a homography H is never singular, we always have det(H) 6= 0. It is also easily
verified that the sign of the determinant of a 3⇥ 3 matrix does not change if the
matrix is multiplied by a positive scalar. Thus we do not need to worry about
the normalization step in equation (5.9). The effect of orientation preservation is
visualized in Figure 5.3.
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Figure 5.2: Illustrations of rotation correction as described in Section 5.2.2. For
a better visualization, only the wireframe of the cube is drawn. The red cube
corresponds to the original rotation matrix R, the green one to the corrected
rotation matrix Rc.

Figure 5.3: Illustrations of the same homography with opposite sign of its
determinant. The red cube corresponds to a positive determinant, it is oriented
towards the camera. The blue cube corresponds to a negative determinant, it is
oriented away from the camera.

39



40 Chapter 5. Graphical Overlay

40



Chapter 6

Evaluation

We have used publicly available datasets to evaluate the performance of our
AR system. This chapter starts by introducing these datasets and explains the
used evaluation methodology. The remaining of the chapter consists of several
evaluations which motivate various design choices and compare different input-
parameter values.

6.1 Datasets

To create comparable results for different tracking approaches and parameter
values, we rely on two annotated datasets. For each frame, the groundtruth
information, i.e. the correct homography transformation of the target, is avail-
able. The first is the Visual Tracking Dataset from the Four Eyes Lab of U.C.
Santa Barbara [GHT11]. The second is provided by Metaio, an AR company
[LBMN09]. We will refer to the sets as the UCSB dataset and the METAIO
dataset. Both datasets consist of a number of targets (see Figures 6.1 and 6.2)
and video sequences which show these targets under various dynamic behaviors
and appearances (see Tables 6.2 and 6.1). The video-sequences contain images
from real cameras, not synthetically generated content, which makes the datasets
similar to real world applications.

Although conceptually the two datasets are very similar regarding the content of
the sequences, there are a few practical differences to consider: The video frames
from the METAIO dataset are free of camera distortion, unlike the frames from
the UCSB dataset, which first have to be undistorted. The calibration param-
eters required for undistorting are provided with the dataset. In the METAIO
dataset, the background (i.e. everything that is not target) is replaced with
solid white color to remove the visual markers that were necessary to extract the
groundtruth. In the UCSB dataset, the background and a chessboard pattern,
used for groundtruth extraction, are still visible. The UCSB website suggests to
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This algorithm was embedded into an interactive tool al-
lowing the user to inspect the result and correct and re-start
the algorithm if needed.

Fig. 1 Adaptive color model: The image in the middle shows the
“probability map” that the adaptive color model generated for the im-
age on the left. The image is then warped into a canonical frame in
which the balls form a rectangle (right image)

Fig. 2 Result of image alignment: Difference between current frame
and reference frame before (left) and after image alignment (right). Im-
ages are shown inverted (i.e. white = image difference 0) and with in-
creased contrast. The alignment was substantially improved. The resid-
uals are due to change in appearance (lighting effects, motion blur),
sensor noise and interpolation artifacts

Overall, this semi-automatic tracking system produced
very stable warped video streams despite extreme viewing
angles and motion blur with a manageable amount of man-
ual labor. Examples of its output are depicted in Fig. 3.

3.2 Dataset

The testbed consists of 96 video streams, showing six differ-
ent planar textures in 16 different motion patterns each, all
recorded with a Unibrain Fire-i camera with a resolution of
640 × 480 pixels. The textures are shown in Fig. 4, and the
motion patterns are as follows:

– Unconstrained: free movement of a hand-held camera,
unconstrained except that the object of interest has to
stay in the field of view. The motion is mostly smooth,
some parts exhibit quick movements and motion blur. Fig-
ure 5(a) shows a reconstruction of one of the flight paths
(6 × 500 frames).

– Panning: located about 1 m from the object of interest, the
camera pans sideways, effectively causing the object to
move sideways with very little distortion (6 × 50 frames).

– Rotation: located about 1 m from the object of interest, the
camera rotates around its optical axis from 0◦ to 90◦, re-
sulting in in-plane rotation of the object (6 × 50 frames).

– Perspective distortion: starting roughly perpendicular
above the object, the camera goes down in an arc, re-
sulting in perspective distortion (out-of-plane rotation) of

Fig. 3 Top row: a few examples of the 6889 frames in the testbed;
bottom row: the same frames, warped to the reference frame. These
examples illustrate the challenges that the dataset encompasses: scale
changes (first two images), rotation, perspective distortion, motion blur

(here: fastest setting), lighting (here: darkest condition). The black-
and-white pattern on the border was added to improve the image align-
ment result (cf. Sect. 3.1), algorithms to be evaluated may use only the
area inside

Fig. 4 Used textures. From left to right: “wood,” “bricks,” “building,” “paris,” “mission,” “sunset”
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sulting in perspective distortion (out-of-plane rotation) of

Fig. 3 Top row: a few examples of the 6889 frames in the testbed;
bottom row: the same frames, warped to the reference frame. These
examples illustrate the challenges that the dataset encompasses: scale
changes (first two images), rotation, perspective distortion, motion blur

(here: fastest setting), lighting (here: darkest condition). The black-
and-white pattern on the border was added to improve the image align-
ment result (cf. Sect. 3.1), algorithms to be evaluated may use only the
area inside

Fig. 4 Used textures. From left to right: “wood,” “bricks,” “building,” “paris,” “mission,” “sunset”Figure 6.1: The UCSB dataset targets [GHT11]. We will refer to them as target
1 to 6 in the same order as they appear here, from left to right.

ID Title Content
1 Dynamic Lighting Continuous illumination changes.
2 Static Lighting Discrete illumination changes.
3 Perspective Distortion Target rotates out of plane.
4 Panning Target moves sideways with motion blur.
5 Rotation Camera rotates around its optical axes.
6 Free Movement Unconstrained, free movement of hand-held camera.
7 Zoom Camera moves perpendicularly away from target.

Table 6.1: Video sequences from UCSB dataset.

remove the background as a preprocessing step before applying a tracking algo-
rithm. We used the provided groundtruth homography to extract only feature-
points that lie on the surface of the target. On one side, this is clearly a simpli-
fication for a tracking algorithm as feature-points from a cluttered background
create outliers. On the other side, a frame-to-frame tracker would immensely ben-
efit from the easily detectable markers. Finally, the groundtruth for the UCSB
dataset is publicly available for download which makes it convenient for rapid
evaluations while the METAIO groundtruth is not publicly available. However,
METAIO offers to evaluate obtained tracking results and to send back the cor-
responding evaluation results.

6.2 Methodology

For the evaluation of our tracking system, we are interested in the ratio of suc-
cessfully tracked frames per sequence and in the accuracy of the estimated homo-
graphies per frame. As accuracy measure, we compute the RMS distance between
the estimated target-corners x0

i and the groundtruth target-corners x̄i obtained
through the datasets. The estimated target corners x0

i are computed by map-
ping the corners of the model-image into the camera-image using the estimated
homography. The RMS distance is then computed by:

RMS =

s
1

4

X

i

kx̄i � x0
ik2 (6.1)
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Figure 6.2: The METAIO dataset targets [LBMN09].

ID Title Content
1 Angle Perspective distortions.
2 Range Different range of scalings.
3 Fast Far Fast movement far from camera.
4 Fast Close Fast movement close to camera.
5 Illumination Illumination changes.

Table 6.2: Video sequences from METAIO dataset.

Based on the accuracy, we compute the ratio of successfully tracked frames.
Whenever the RMS error is higher than 10 px we assume the tracker lost the
target and mark the frame as not successfully tracked. Finally, we analyze the
statistical distribution of the error for successfully tracked frames. This approach
is consistent with the methodology proposed by [LBMN09] which allows a mean-
ingful comparison of both datasets.

The overall procedure for our evaluation consists in first analyzing the differ-
ent components of the detection and tracking part separately. We do this to
compare different implementation approaches and motivate our final choice. Fi-
nally, we also give an extensive evaluation of the complete detection and tracking
system. We start by evaluating the components of the detection part.

6.3 RANSAC Sample Selection

In this section, we analyze the performance of RANSAC. Specifically, we com-
pare RANSAC using guided-sample-selection (as described in Section 3.3.2) to
naive random-sample-selection as described in Section 2.2. We will refer to them
as guided -RANSAC and random-RANSAC respectively. In particular, we inves-
tigate if the guided-sample-selection yields enhancements over random-sample-
selection in terms of robustness, amount of inliers, accuracy and speed.
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Figure 6.3: Comparing random-RANSAC (red) and guided-RANSAC (blue)
on target 1 for all sequences. From left to right: (1) Average RMS error over
all correctly tracked frames. (2) Ratio of correctly tracked frames. (3) Average
number of inliers per frame. (4) Average time to process a frame.

RMS tracked #inliers time
random 3.270 px 66.80 % 53.02 333.1 ms
guided 3.271 px 68.54 % 53.61 182.5 ms

Table 6.3: Comparing random-RANSAC and guided-RANSAC. Average values
over all targets and all frames of all sequences.

6.3.1 Setup

The evaluation is performed on the UCSB dataset. The database contains the
descriptors from the six dataset targets. Per frame, 800 feature-points are ex-
tracted. The corresponding descriptors are matched independently against the
database using nearest-neighbor-search with Hamming distance and a distance
threshold of 55bit (ORB descriptor length is 256bits). The resulting matches
are filtered using ratio-test with factor 0.8. The remaining correspondences serve
as input to RANSAC. A correspondence is classified as outlier if the symmetric
transfer error (eq. 3.2) exceeds 6 px. Based on the inliers provided by RANSAC,
the homography is computed using normalized DLT with LM optimization. For
both approaches, we compare the average RMS error over all correctly tracked
frames, the ratio of correctly tracked frames, the average number of inliers per
frame and the average computation time per frame.

6.3.2 Results and Discussion

The average results over all the sequences and all the targets are given in Ta-
ble 6.3. Figure 6.3 exemplifies these results for target 1. All the qualitative
results are to be found in Appendix A, Figure A.2. The overall performance of
guided-RANSAC and random-RANSAC are very similar; except for the runtime-
performance: guided-RANSAC is almost twice as fast as random-RANSAC. The
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better runtime-performance of guided-RANSAC was not expected. We explain
this by the careful choosing of matches during the RANSAC iterations which
results in a faster convergence of the RANSAC algorithm. Additionally, the
convexity-constraint in guided-RANSAC guarantees that only non-degenerated
homographies are returned. As a consequence, we will keep the constrained
RANSAC as part of our final system.

6.4 Normalized DLT and LM

In this section, we compare the accuracy of the DLT algorithm and its normalized
version, the nDLT algorithm. Both algorithms will be applied to the same set
of inlier correspondences. Additionally, we inspect the gain in accuracy acquired
through optimizing the solutions in a non-linear fashion using LM as described
in Section 3.4.2.

6.4.1 Setup

The setup for the experiment is similar to the one used for RANSAC evaluation.
However, this time the experiments are performed with various numbers of ex-
tracted feature-points and we only rely on guided-RANSAC to eliminate outliers.
Based on the inliers, we estimate a homography using DLT, the normalized DLT
(nDLT), the DLT with LM optimization (DLT+LM) and the nDLT with LM
optimization (nDLT+LM). The evaluation is performed on all the targets and all
the sequences from the UCSB dataset. For each approach, we compare the accu-
racy of the estimated homography. The average RMS error for each approach is
computed on the same set of frames, namely those for which RMS(nDLT) < 10
px.

6.4.2 Results and Discussion

Figure 6.4 visualizes the average RMS error exemplarily for target 5 with 400
extracted feature-points and the average RMS error over all the targets and se-
quences using different numbers of extracted feature-points. Similar results are
obtained for the other targets. Figure A.3 in Appendix A shows the results for
all the targets and for different amounts of feature-points. The numerical values
of the right figure are indicated in Table 6.4. We can observe a considerable
improvement by applying LM to DLT. However, very similar results are achieved
if nDLT is directly applied. We could not observe a similar improvement when
applying LM to the results of nDLT. Non-surprisingly, the accuracy of the ho-
mography estimation increases when using more feature-points. The number of
feature-points seems to have no significant influence on the discrepancy between
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Figure 6.4: Comparing DLT, normalized DLT and influence of optimization
with LM. Left: average RMS error over all frames for target 5 and 400 feature-
points on all sequences. Right: average RMS error over all targets and sequences
with different number of extracted feature-points.

#features DLT DLT+LM nDLT nDLT+LM
200 6.975 px 3.954 px 3.963 px 3.950 px
400 6.200 px 3.559 px 3.562 px 3.558 px
800 5.841 px 3.275 px 3.273 px 3.272 px
1600 4.841 px 2.934 px 2.943 px 2.940 px

Table 6.4: Results from homography estimation evaluation: average RMS error
for different estimation methods and different amount of feature-points. The
same results are visualized in the right of Figure 6.4.

the different approaches. For the final detection pipeline we keep nDLT with LM
optimization as it gives the most accurate results.

6.5 Detection Parameter Optimization

Currently our detection system has four parameters: the threshold value tHD

for nearest-neighbor Hamming-distance, the factor fRT for the ratio-test, the
maximum number of extracted feature-points n and the symmetric transfer error
threshold ⌧d? . In Section 3.2, we empirically found that tHD = 55 limits the
number of false correspondences and [Low04] proposes the value fRT = 0.8. Thus,
we are left with two remaining parameters: the number of feature-points n and
the symmetric transfer error threshold ⌧d? .
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Figure 6.5: Visualizing the influence of threshold ⌧d? and number of feature-
points n. Left: RMS error for correctly tracked frames. Middle: number of
correctly tracked frames. Right: average time in ms per frame. The different
colors correspond to different values for n.

# features n
100 200 400 800 1600

⌧ d
?

4 3.265 px 4.101 px 3.712 px 3.442 px 2.987 px
8 3.667 px 3.985 px 3.503 px 3.094 px 2.919 px

12 3.674 px 4.096 px 3.318 px 2.969 px 2.718 px
16 3.464 px 4.101 px 3.315 px 2.869 px 2.707 px
18 3.852 px 3.955 px 3.202 px 2.807 px 2.559 px

Table 6.5: RMS for different values of n and ⌧d? . The values are the average
over all targets and sequences from the UCSB dataset.

6.5.1 Setup

The evaluation setup did not change, only nDLT+LM is used to estimate the
homography. To analyze the influence of the parameters, the evaluation is per-
formed with n 2 {100, 200, 400, 800, 1600} and ⌧d? 2 {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}.

6.5.2 Results and Discussion

The average results over all targets and all sequences are visualized in Figure 6.5.
The RMS plot for n = 100 is not representative as only ±20% of the frames were
correctly tracked, thus the untypical behavior in the left plot. The corresponding
numerical results are given in Table 6.5 and Table 6.6. Quite surprisingly, the
RMS error and the number of correctly tracked frames do not increase with the
threshold ⌧d? , on the contrary, they even decrease. This is maybe due to the
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# features n
100 200 400 800 1600

⌧ d
?

4 18.02 % 38.82 % 58.33 % 67.84 % 70.14 %
8 19.69 % 42.96 % 60.70 % 68.82 % 71.13 %

12 22.27 % 44.55 % 62.70 % 69.87 % 72.53 %
16 21.53 % 45.23 % 63.69 % 70.94 % 73.10 %
18 22.18 % 47.20 % 63.99 % 70.93 % 73.41 %

Table 6.6: Percentage of successfully tracked frames for different values of n and
⌧d? . The values are the average over all targets and sequences from the UCSB
dataset.

sample selection strategy in the RANSAC routine and, perhaps, the additional
number of correspondences marked as inliers which outperform the fewer but
more accurate correspondences. As expected, the overall accuracy improves with
more feature-points. Additionally, with increasing t? the average processing time
per frame decreases. This makes sense as more correspondences are marked as
inliers during a RANSAC iteration and thus the number of inliers increases faster.

6.6 Overall Detection Performance
We now inspect the overall performance of the detection system. As performance
measure, we look at the number of correctly tracked frames and the accuracy
of the correctly tracked frames. The evaluation is performed on the UCSB- and
the METAIO-dataset. As an added benefit, the detection evaluation generates
reference values which are later used to compare it to the results of tracking
evaluation.

6.6.1 Setup

Detection makes use of guided RANSAC for outlier removal and normalized DLT
with LM optimization for homography estimation. The database contains the
descriptors of all the targets of the respective datasets. We set the parameters to
n = 5000 and ⌧d? = 6.

6.6.2 Results and Discussion

The ratios of successfully detected frames are shown in Table 6.7 and 6.8. The
Figures 6.7 and 6.9 show the distribution of RMS error for each sequence. At
a first glance, we observe that the METAIO dataset is generally more difficult
then the UCSB dataset in terms of detection rate and accuracy. This is mostly
due to more challenging dynamic behavior of the targets. However, we observe
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Dyn. Static Persp. Free
Target Light Light Dist. Panning Rotation Move Zoom

1 100 % 100 % 64.6 % 95.9 % 100 % 38.5 % 100 %
2 97.0 % 100 % 69.4 % 87.8 % 100 % 67.5 % 100 %
3 97.0 % 98.7 % 71.4 % 100 % 100 % 57.1 % 100 %
4 100 % 100 % 75.5 % 95.9 % 100 % 75.4 % 100 %
5 25.3 % 41.8 % 48.9 % 12.2 % 51.0 % 12.2 % 59.2 %
6 45.5 % 55.7 % 57.1 % 0.00 % 57.1 % 15.0 % 49.0 %

Table 6.7: Ratio of successfully tracked frames from the UCSB dataset.

Target Angle Range Fast Far Fast Close Illumination
1 0.10 % 0.10 % 0.10 % 0.10 % 0.10 %
2 7.00 % 16.9 % 3.20 % 6.20 % 12.6 %
3 12.8 % 35.8 % 5.30 % 29.1 % 46.1 %
4 32.7 % 48.8 % 6.30 % 46.2 % 69.3 %
5 13.1 % 16.9 % 3.10 % 13.5 % 30.7 %
6 23.0 % 35.6 % 7.20 % 24.9 % 56.0 %
7 5.40 % 8.4 0 % 3.30 % 2.50 % 1.90 %
8 35.4 % 31.3 % 5.30 % 15.8 % 54.4 %

Table 6.8: Ratio of successfully tracked frames from the METAIO datatsets.

similar results for comparable sequences: our detection system is rather robust
against lighting changes (Dynamic Lighting, Static Lighting, Illumination), in-
plane rotation (Rotation) and target scaling (Zoom, Range). This robustness
originates from the invariance characteristics of the ORB descriptor. Further-
more, as we employ geometric validation with RANSAC, the system correctly
handles repetitive feature-points (METAIO: target 3 and 4, UCSB: target 2). As
the system is based on feature-point extraction, it is inherently failure-prone to
fast moving target. Fast motion results in a blurred image which makes it very
challenging to extract corner-based features (Fast Far, Fast Close). The same
is true for low-textured targets which naturally yield very little usable features
(UCSB Target 5 and 6, METAIO Target 1 and 7). For target 1 in the METAIO
dataset, no usable detection results were obtained. There is however potential in
improving the performance for targets facing perspective distortion. (Perspective
Distortion, Free Move, Angle, Range)

49



50 Chapter 6. Evaluation

Dyn.Light Stat.Light Persp.Dist. Panning Rotation FreeMov. Zoom

10

20

30

40

50

60

70

80

90

100

Targets

D
et

ec
te

d
[%

]
Detection ratio for UCSB dataset

1
2
3
4
5
6

Figure 6.6: Ratio of successfully tracked frames for the UCSB dataset, grouped
by sequences. The colors correspond to the different dataset targets.
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Figure 6.7: Distribution of RMS error for each sequence of the UCSB dataset,
grouped by targets. Only successfully tracked frames are taken into account.
The whiskers denote minimum and maximum, the box spans from first to third
quartile, the red segment shows the mean RMS error.

50



6.6. Overall Detection Performance 51

Angle Range FastFar FastClose Ilumination

10

20

30

40

50

60

70

80

90

100

Targets

D
et

ec
te

d
[%

]

Detection ratio for METAIO dataset

1
2
3
4
5
6
7
8

Figure 6.8: Ratio of successfully detected frames for the METAIO dataset,
grouped by sequences. The colors correspond to the different dataset targets.
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Figure 6.9: Distribution of RMS error for each sequence of the METAIO
dataset, grouped by targets. Only successfully tracked frames are taken into
account. The whiskers denote minimum and maximum, the box spans from first
to third quartile, the red segment shows the mean RMS error.
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Figure 6.10: Comparing different warped matching approaches. Left: the
model-image is warped. Right: the camera-image is warped. The left part of
each image shows the (warped) model-image, the right part shows the (warped)
camera-image. For a less cluttered visualization, only the strongest matches
(green) are plotted.

6.7 Warped Matching
In the following sections, we will start the evaluation of the tracking part. In this
section, we motivate our warped-target matching approach presented in Section
4.4. The main idea behind warping an image for matching is to become robust
against perspective distortion. The goal is to perform matching on a pair of
images under the same perspective transformation. For that, we need to apply
a perspective transformation on one image from the pair. We can either choose
to warp the model-image or the camera-image. In order to decide which one to
pick for the final implementation, we count the number of matches returned by
each approach. Figure 6.10 shows both matching approaches.

6.7.1 Setup

For the evaluation, we used the third video sequence of the UCSB dataset, which
shows the target object at first roughly perpendicular from top, then as the cam-
era goes down, under in increasing perspective distortion. The angle between
the normal of the target and the optical axis of the camera varies between 0�

and approximately 90�. In each frame, we extracted at most 1200 feature-points
originating from the target surface. Both perspective transformations are com-
puted with the same (inverted) homography estimated in the previous frame.
The matches are computed using grid matching with a search radius of 5 px.
Then we compare the number of found matches for each frame.

6.7.2 Results and Discussion

The number of matches for each frame and both approaches are plotted in Figure
6.11. We exemplarily show the results for target 3 and the average over all targets.
The individual results for all the targets are given in appendix A, Figure A.4.
On the average, we observe that both approaches give similar results. For small
angles, warping the scene-image yields more matches. As the angle increases,
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Figure 6.11: Comparing the number of matches for different warped matching
approaches: warping the model-image (blue) and the camera-image (green). The
angle is defined by the target surface normal and the optical axe of the camera.
Left: number of matches for target 3. Right: average number of matches over all
targets.

the warped-target approach gives increasingly better results. Above ±50�, the
latter slightly outperforms the warped-scene approach. As the goal of the warped
matching approach is to increase the number of matches for large angles, and thus
become more robust against perspective distortion, we chose the warped-target
approach for our final system.

6.8 Tracking Parameter Optimization
In this section we analyze the influence of the tracking parameters. Besides the
parameters from the detection part, we have two new additional parameters: in
grid matching, each cell has a certain size s, in inter-frame matching we decide
based an on uncertainty value ⌧HU whether an estimated homography is accurate
enough for back-projection (see Section 4.3). The goal now is to find a good
combination of values for all these parameters in the sense of smallest RMS and
highest tracking ratio.

6.8.1 Setup

The evaluation is performed for the parameters and values shown in Table 6.9.
As the number of parameters and parameter values is quite numerous, in order to
save time, the evaluation is performed only on sequence 6 (Free Move) for all the
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Parameter Symbol Values
Max. number of extracted features n 400, 800, 1600
Symmetric transfer error threshold ⌧d? 21,22,23,24,25,26,27,28,29,210

Grid cell side length s 5, 10, 20, 40, 80
Homography uncertainty threshold ⌧HU 5, 20, 80, 320

Table 6.9: Tracking parameters and evaluated values.

targets. It is the longest and most challenging sequence. We again considered
different values for ⌧d> to further investigate the results obtained during the
detection evaluation in Section 6.5.

6.8.2 Results and Discussion

Figure 6.12 shows the ratio of successfully tracked and their accuracy for s and
⌧HU for different values of n. The results for different values of ⌧d? are shown in
Figure 6.13. The best results (in terms of accuracy and ratio of correctly tracked
frames) are achieved with cell side length s = 40 px. The figures show that larger
values for ⌧HU increase the number of tracked frames, but reduce the overall
accuracy. We also notice that for ⌧HU > 80 the number of tracked frames barely
seems to increase. To choose a value for ⌧HU requires finding good compromise
between these two aspects. We decided on ⌧HU = 40. Again, without surprise, an
increasing number of feature-points gives increasingly better results. As for the
value of ⌧d? , we observe a local minima around ⌧d? = 16 in terms of RMS error
and detection ratio. After this point, the number of correctly tracked frames stays
more or less constant and the RMS slowly increase. This corresponds better to
our understanding of the parameter as the results found in Section 6.5.
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Figure 6.12: Tracking parameter analysis for n, s and ⌧HU with ⌧d? = 6. Average
values over all targets in sequence 6. The colors correspond to different values of
s. Left column: ratio of successfully tracked frames. Right column: accuracy of
the successfully tracked frames.
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Figure 6.13: Tracking parameter analyses for ⌧d? with n = 800, s = 40 px and
⌧HU = 40. Average values over all targets in sequence 6.
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Figure 6.14: Difference between the RMS error of the current measured homog-
raphy and the corrected homography. The colors indicate the different targets.
A bar with positive magnitude signifies that the corrected homography is more
accurate than the measured one.

6.9 Kalman Filter
In this section, we analyze the accuracy of the Kalman filtered homography by
comparing them to the per frame estimated homography. We show that Kalman
filtering improves the overall accuracy of the homography estimation when no
measurement is available for several frames and that it helps to smooth fluctuating
estimations.

6.9.1 Setup

We compare the difference between the accuracy of the measured homography
and the Kalman filtered homography. Again, we consider all the targets and all
sequences of the METAIO dataset. In order to get objective results, we consider
the RMS of all frames, not just the correctly tracked ones as in the previous
evaluations.

6.9.2 Results and Discussion

Figure 6.14 shows the improvements due to Kalman filtering with regard to the
average RMS error. Exemplarily, we show in Figure 6.15 the RMS error for
each frame of sequence 1 showing target 3. We compare the RMS error of the
estimated (measured) homography to the filtered (corrected) homography. The
effect of the Kalman filter is twofold: First, it increases the number of successfully
tracked frames and secondly it returns more jitter-free homographies. Looking
at Figure 6.14, we see that the difference in accuracy is most significant for se-
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Figure 6.15: Effect of Kalman filtering: As the lighting decreases, the measure-
ments become less accurate and we observe a fluctuating behavior. The Kalman
filter successfully smoothes the error. The camera-images above the plot illustrate
the content of the respective frames.

quences (3, 6) and targets (4,5) that are more prone to tracking failure (compare
Figure 6.16). The last frames of sequence 3 are affected by significant perspective
distortion which yields very inaccurate measurements. The motion prediction of
the Kalman filter successfully provides homography estimation for these frames.

Figure 6.15 shows the smoothing effect of the Kalman filter. The contrast in
the camera-image decreases with the lighting which results in a smaller number
of extractable feature-points and thus also less correspondences. Fewer matches
results in less reliable homography estimations and also more fluctuation between
neighboring frames. Of course, the Kalman filtered solution is not always better
as illustrated by target 5. Upon closer analyzation of the sequence, we found that
the average measurements were not very reliable and thus the Kalman filter put
more trust into the dynamic model which unfortunately was even more wrong
than the measurements.

In conclusion, we can say that the Kalman filter improves the overall results.
The main benefit of the filter is the over bridging of single frames which did not
yield accurate measurements or no measurements at all. However, this is only
the case if the overall measurements are already quite reliable.
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Dyn. Static Persp. Free
Target Light Light Dist. Panning Rotation Move Zoom

1 100 % 100 % 100 % 100 % 100 % 78.6 % 100 %
2 100 % 100 % 100 % 100 % 100 % 100 % 100 %
3 100 % 100 % 87.8 % 100 % 100 % 89.6 % 100 %
4 100 % 100 % 95.9 % 100 % 100 % 99.2 % 100 %
5 68.7 % 79.7 % 91.1 % 28.6 % 100 % 34.7 % 100 %
6 58.6 % 78.5 % 83.7 % 14.3 % 100 % 32.9 % 100 %

Table 6.10: Ratio of successfully tracked frames for the UCSB dataset.

Target Angle Range Fast Far Fast Close Illumination
1 1.10 % 1.80 % 0.70 % 1.80 % 1.60 %
2 68.7 % 63.6 % 12.2 % 16.8 % 50.2 %
3 67.4 % 51.1 % 10.2 % 20.3 % 84.7 %
4 96.8 % 56.2 % 11.9 % 43.8 % 96.6 %
5 73.5 % 53.6 % 6.10 % 35.2 % 77.9 %
6 72.0 % 66.8 % 13.1 % 15.0 % 97.4 %
7 8.50 % 13.2 % 5.10 % 4.20 % 4.00 %
8 98.0 % 65.7 % 9.60 % 17.9 % 81.0 %

Table 6.11: Ratio of successfully tracked frames for the METAIO dataset.

6.10 Overall Tracking Performance
In this section, we evaluate the overall tracking performance of the tracking sys-
tem and compare it to the results obtained for the detection system in Section 6.6.
Again, we measure the performance using the ratio of correctly tracked frames
and the accuracy of the correctly tracked frames.

6.10.1 Setup

For evaluation, we used the parameter-values found in the previous sections. In
particular, we have ⌧d? = 8, s = 40 px, ⌧HU = 40 and n = 5000 for maximum
performance. We consider all the targets and all the sequences for the UCSB-
and the METAIO-dataset.

6.10.2 Results and Discussion

The ratios of successfully tracked frames for the UCSB and METAIO datasets
are shown in Table 6.7 and Table 6.8 respectively. For better visual comparison,
the ratios are also visualized in Figure 6.16 and Figure 6.18. The accuracy of the
correctly tracked frames is expressed using the RMS error and is shown in Figure
6.17 and Figure 6.19.
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Figure 6.16: Ratio of successfully tracked frames for the UCSB dataset, grouped
by sequences. The colors correspond to the different dataset targets.
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Figure 6.17: Distribution of RMS error for each sequence of the UCSB dataset,
only successfully tracked frames are taken into account. The whiskers denote min-
imum and maximum, the box spans from first to third quartile, the red segment
shows the mean RMS error.
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Figure 6.18: Ratio of successfully tracked frames for the METAIO dataset,
grouped by sequences. The colors correspond to the different dataset targets.
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Figure 6.19: Distribution of RMS error for each sequence of the METAIO
dataset, only successfully tracked frames are taken into account. The whiskers
denote minimum and maximum, the box spans from first to third quartile, the
red segment shows the mean RMS error.
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At first sight, tracking immensely improves the performance of our AR system.
The overall detection ratio was increased while at the same time reducing the av-
erage RMS error. Well textured targets (1,2,3,4) are successfully tracked through-
out almost all the sequences. Targets with little texture (5,6) are considerably
more difficult to track. The most considerable improvements over the detection
results are achieved for sequences that show large perspective distortions. This
improvement is due to warped-target matching and inter-frame matching.

6.11 Graphical Overlay Performance
We now analyze the accuracy of the 6DoF pose estimation described in Chapter
5. We compare the pose P and its orthogonalized counterpart Pc.

6.11.1 Setup

To evaluate the accuracy of the pose estimation we measure the RMS error be-
tween the target corner-points x0

i in the scene image and the projected target
corner-points xP

i = K · P ·xi. The experiment is performed for both P and Pc. The
pose estimation is based on an input homography. We perform the experiment
using the groundtruth homography HGT provided by the UCSB dataset and the
homography H estimated by our system. The evaluation is performed on a video
sequence of 500 frames.

6.11.2 Results and Discussion

The qualitative results are given in Figure 6.20. The top figure shows the results
for pose based on the groundtruth homography. The two bottom plots show the
results for the pose based on the estimated homography. The middle plot shows
the error RMS(Hxi,xP

i ), the bottom plot shows RMS(x0,xP
i ). The additional

error introduced by the estimated pose P is close to zero, while the error intro-
duced by Pc is unequally larger. On the one hand Pc fulfills the properties of
a rotation matrix but on the other hand P gives more accurate results which is
more important to us. To conclude, we can say that our approach gives very
satisfying visual results, under the assumption of a well-estimated input homog-
raphy. Figure A.7 in appendix A shows visual results for pose estimation based
on groundtruth homographies.
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6.6. Tracking multiple objects at the same time 39
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Figure 6.1: The figures show the reprojection error of the target corner points.
The top figure shows the results for pose based on the groundtruth homogra-
phy. The two bottom plot show the results for the pose based on the estimated
homography. The middle plot shows the error RMS(Hxi,xP

i ), the bottom plot
shows RMS(x0,xP

i ).

39

Figure 6.20: The figures show the reprojection error of the target corner-points.
Top: results for pose based on the groundtruth homography. Middle: error
RMS(Hxi,xP

i ) based on the estimated homography. Bottom: error RMS(x0,xP
i )

based on the estimated homography.
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Figure 6.21: Accumulated acceleration and per frame RMS error over sequence
2 for target 2. Database is the result for homography estimation based only on
database matches. Warped additionally uses warped-matching, Inter adds the
inter-frame matches and InterBack also adds back-projected inter-frame matches.

6.12 Visual Jitter and Perspective Distortion
By visual jitter we understand rapid shaking of the rendered objects due to
estimation errors. Jitter reduces the quality of an authentic visual impression and
should therefore be minimized. The following presents an evaluation methodology
for jitter and shows how our hierarchical matching approach reduces jitter while
also improving the robustness against perspective distortion.

6.12.1 Setup and Evaluation Methodology

Looking at the RMS error alone is not an option for evaluating jitter as it can
be arbitrarily high even if no jitter is observable. Jitter is most notable in static
scenes, as it is very easy for the eye to notice a moving object in a static back-
ground. In this case, we think the acceleration is a meaningful measure as it
directly represents what the human eye perceives as jitter. Together with the
RMS we obtain a quite good measure for jitter. For our evaluation, we consider
a static scene and a static camera as in sequences 1 or 2 of the UCSB dataset.
If the estimation is jitter-free, the mapped target-corners should be static. This
means that their acceleration is constant and zero. To evaluate the robustness to
perspective distortion, we compare the RMS error against ↵ defined by the angle
between the surface normal and the camera’s optical axes. Sequence 3 is ideal
for this scenario, it starts with ↵ = 0� and ends with ↵ = 90�.

6.12.2 Results and Discussion

The curves in Figure 6.21 show the results for four different homographies based
on an increasing number of matches: (Database) Only the greedy matches be-
tween the camera-image and the model-image are considered. (Warped) Addi-
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Figure 6.22: Robustness of the framework to increasing perspective distortion.
The plot shows per frame RMS error over sequence 3 for target 2. The camera-
images above the plot illustrate the content of the respective frames.

tionally to the database matches, also the warped-target matches are used. (Inter)
More matches are added from the inter-frame matches (InterBack). Finally, also
the back-projected matches from inter-frame matching are added. Figure 6.21
exemplarily shows the results of the jitter evaluation. Figure 6.22 illustrates the
results for the perspective distortion evaluation. Both evaluations show clearly
that our hierarchical matching approach very successfully avoids jitter and is
able to handle significant perspective distortion (Almost 90�). It is also apparent
that inter-frame matching without back-projecting unmatched feature merely in-
creases to performance compared to warped-target matching. However, assuming
back-projecting can be performed, it gives significantly better results regarding
jitter and perspective distortion.
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Figure 6.23: The color indicates different values for the number of feature-
points n. Left: Computation time per frame in milliseconds. Right: Accumulated
number of correctly tracked frames.

6.13 Runtime Performance
Although optimization for speed was not one of our goals, we still provide the
numbers for comparison with possible future optimizations.

6.13.1 Setup

We perform the evaluation on sequence 6 for target 2 of the UCSB dataset. The
database contains the 6 targets from the UCSB dataset. The resolution of the
video sequence is 640 ⇥ 480 px. Our PC’s CPU is an Intel Core i7 running at
3.4Ghz. Although the CPU has multiple cores, our tracker runs only single-
threaded. We use different numbers of feature-points n. For each n, we record
the frame-rate and the number of correctly tracked frames.

6.13.2 Results and Discussion

Figure 6.23 shows the effect of different numbers of feature-points on the compu-
tation time and amount of successfully tracked frames. The left plot shows that
the computation-time increases with the number of feature-points. The right plot
shows the accumulated number of correctly tracked frames over the complete se-
quence. For n = 500, n = 1000 and n = 2000 the results are identical and ideal.
For n = 100, only half of the frames are correctly tracked. Again, we consider a
frame to be correctly tracked if the RMS error is smaller then 10 px. Without sur-
prise, the number of feature-points has an influence on the runtime performance
and the accuracy of the tracking results. For 100 feature-points we obtain ±16
fps but the tracking performance is not useable for practical applications. For
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Figure 6.24: Detecting multiple different targets during one sequence. The color
indicates the currently detected target. Frames 230-233: Erroneous detection.

500 feature-points, we obtain a frame-rate of ±6 fps, while successfully tracking
all frames. Still better (jitter-free) results are obtained for n=2000. However, the
frame-rate drops to ±3 fps, which is far from real-time performance.

6.14 Robust Multiple Target Tracking
In this last evaluation, we show that our system can successfully differentiate
between multiple targets. The goal is to proof that the system robustly detects
targets from the database and returns no detections when no learned target is
visible. We also show that our system can handle situations during which the
target instantly changes.

6.14.1 Setup

For this evaluation, we traine the system with target 1, 3, 4 and 6 from the
UCSB dataset, all the targets from the METAIO dataset and two additional
targets. In total, the database contains 14 targets. We create a video sequence
showing different targets by concatenating all the Rotation sequences of the UCSB
dataset. By not training the system with target 2 and 5, we simulate the case
when no learned target is visible. We limit the number of feature-points to 2000.
This means that the database contains at maximum 28000 descriptors. For each
frame and detection, we compute the RMS error.

6.14.2 Results and Discussion

Figure 6.24 shows the RMS error for each frame of the sequence. The different
colors correspond to the id’s of the detected targets. Between frames 0-50, target
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1 was successfully detected. The frames 51-100 contained no target from the
database and no detection was observed. Frames 101-150 show target 3, frames
151-200 target 4; note the different behavior of the RMS error before frame 150
and after frame 150 which is where the id of the visible target changed. Between
frame 251 and 300, target 6 is detected. One wrong detection was made at frame
230. After a new target was detected, the initial RMS error decreased. This
shows the effect of the hierarchical matching used during tracking. In general,
we observed that the system copes well with varying targets. Whenever a target
from the database became visible, it was correctly tracked. As soon as a different
target became visible, it was instantly detected. Upon analyzing on the erroneous
detection at frame 230, we found that the fluctuation is due to wrong matches
between the camera-image and the previously detected warped model-image. The
resulting matches yielded a valid homography, which was then used to initialize
the Kalman filter. Since the erroneous detection occurred only in one frame, the
track stopped after 3 frames as the Kalman filter received no new measurements.
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Chapter 7

Conclusion

In this work, we explored the task of multiple target tracking for marker-less
augmented reality applications. We implemented a tracker for multiple planar
targets, based on the ORB [RRKB11] feature-point descriptor. The implemen-
tation is written in C++ and uses the ORB implementation provided by the
OpenCV library [Bra00]. We put the focus on accurate camera-pose estimation
rather than real-time capabilities. Although, by limiting the number of extracted
feature-points, we could achieve a frame-rate of up to 7fps on a Intel Core i7 CPU
@ 3.4GHz, while maintaining acceptable tracking results.

The main components of the framework are a detector, a tracker and a graph-
ical overlay. The detector returns a homography that maps the model-image
onto the target in the camera-image. The homography is estimated from a
set of feature-point correspondences using the normalized DLT algorithm and
Levenberg-Marquardt to refine the solution. We observed that data normalization
increases the accuracy of the DLT considerable, up to the point that one might
consider skipping the refine-step in favor of speed. The outliers in feature-point
correspondences are removed using RANSAC, which we enhanced with a sanity
check to make sure only rigid-body transformations are returned. We showed that
this approach not only improves the robustness of our system, but also increases
the speed. The tracker is based on the Kalman filter [FP02], which applies a
consistent dynamic movement on the target. We showed that the system detects
slightly more frames with the filter. However, we think that a more elaborated
filter, could even further improve the results. We introduced a hierarchical match-
ing scheme and experimentally proved its benefits over database-matching. We
extracted additional matches from consecutive frames and perspectively trans-
formed model-images, which yields more accurate and jitter-free homography
estimations. The graphical overlay computes the 6DoF pose from the estimated
homography which we used to render an artificial object on the tracked target.
We presented a direct solution for the pose estimation problem, by decomposing
a given homography. In the evaluation part, we analyzed the performance of our
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system by looking at the accuracy of the estimated homography and the ratio of
correctly tracked frames. For the evaluation we used publicly available datasets,
namely UCSB [GHT11] and METAIO [LBMN09]. We evaluated most compo-
nents of our framework under different lighting conditions and target movements.
In particular, we proved that our framework is robust against considerable per-
spective distortion and showed how the hierarchical matching scheme minimizes
jitter and improves accuracy.

7.1 Future Work
We now present possible improvements and additions from which the AR system
could benefit. Besides the obvious optimization for speed and real-time capabil-
ity, we mention a few potential points:

Database Matching. In the current implementation, we use a naive greedy ap-
proach for establishing correspondences between the descriptors from the camera-
image and the descriptors from the database. This leaves plenty of room for
improvement, especially regarding speed. Possible alternatives are tree-based
matching, hashing-based algorithms or more advanced approaches like visual vo-
cabularies as described in [GL11].

Dynamic Tracking Model. The current implementation uses the traditional
Kalman filter with a constant velocity movement model. Clearly, this model is
a severe simplification of the actual, complex dynamic-behavior of a hand-held
camera. More elaborated approaches, such as Extended Kalman filter (EKF),
which is very popular in robots [TBF+05], or particle filters [FP02] could be in-
teresting alternatives. Additionally, it would definitely make sense to directly
apply the filter to the pose of the tracked target.

3D-Targets. Supporting also non-planar targets comes as a natural next step.
Relatively quick results could be obtained by assigning a 3D position to the
feature-points in the model-image and then compute the pose as described in
[HZ00] p.181. This approach is similar to [PLW08].

RANSAC Frame-to-frame feature tracking yields a number of correspondences
that are inliers with high probability. This knowledge can be used to improve
RANSACs conversion speed.

We finish with a list of a few smaller enhancements: Different parameterization
for the homography could be considered, such as [HZ00] (p.111). The estimated
6DoF pose could be refined in an additional step using Levenberg-Marquardt to-
gether with M-estimators and weighting factors [LF05]. As we have shown that
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the accuracy of the estimated homography increases with the number of corre-
spondences, one could try to iteratively establish new matches for feature-point
pairs that were first identified as outliers. A similar approach is presented in
[SÖL+10].
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Appendix A

Figures

The appendix contains additional evaluation figures and shows visual results of
our AR framework.

Appendix A

Figures
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Figure A.1: Figures from setup described in section 3.2 showing various thresh-
olds ⌧ and scalings s.
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Figure A.1: Figures from setup described in section 3.2 showing various thresh-
olds ⌧ and scalings s.
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Figure A.3: Comparing constrained (red) and unconstrained (blue) RANSAC.
The shown values are the average results over all input frames.
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Figure A.2: Comparing guided (red) and random (blue) RANSAC. The shown
values are the average results over all input frames. See section 6.3.
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Figure A.4: Comparing DLT, normalized DLT and influence of optimization
with LM. The average RMS error over all frames.
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Figure A.3: Comparing DLT, normalized DLT and influence of optimization
with LM. See section 6.4.
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Figure A.4: Comparing different warping approaches for matching.
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Figure A.4: Comparing different warping approaches for matching as explained
in section 6.7.
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Figure A.5: Figures from setup described in section 6.11 showing the robustness
of the pose estimation algorithm based on groundtruth homography.
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Figure A.6: Illustration of target leaving the field of view of the camera. The
target is still detected in the third last shown frame.
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Figure A.7: Illustration of target with increasing perspective distortion. The
tracking breaks only close to 90�.
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