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A. Inception Score’s Unsuitability in Reposing

Many related works use the Inception score (IS) [3], as
a metric for person reposing. IS was proposed to evalu-
ate unconditioned GANs, i.e., GANs which are supposed to
generate a diverse dataset like ImageNet [2] based on ran-
dom inputs. Two aspects are combined: realism of single
generated images and variability of a large set of generated
images. Generated images are passed through the Inception
network [5], a single realistic image x should be confidently
assigned to a single class, so the assigned label distribution
p(y|x) has a single high activation. In contrast, multiple
generated images should belong to different classes, thus
p(y) is rather uniform. IS compares these distributions us-
ing the Kullback-Leibler divergence, which means that the
score is high, if the distributions are dissimilar. For human
reposing only a single output class exists, such that for a
perfect generator both p(y) and p(y|x) are the same, be-
cause the Inception network always assigns the label “hu-
man”. This issue invalidates the Inception Score as a metric
for person reposing.

B. Evaluation Protocol on iPER

Liu et al. [1], who published the iPER dataset, perform
evaluation by selecting three frames per person and then
generating the full video based on each of these frames. The
results are then compared to the original videos using the
quantitative metrics.

As the authors have not published their frame selection
procedure, replicating their exact evaluation protocol is cur-
rently not possible. We therefore use the following selection
procedure: we first uniformly sample a random clothing
layout from the test set, then randomly select two frames
from this person. The network then generates the second
frame based from the first one. This process is repeated
10,000 times, the mean scores are reported.

C. Additional Qualitative Results
We compare our model to [4, supplementary Figure 9] in

Table 1.
Table 2 shows generated images of our model compared

to the ablation models and to the results of [1, Figure 7].
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input image target pose DSC [4] ours

Table 1. Qualitative comparison with an approach based on 2D
feature warping.

input
image

target
pose

LWB [1] 2D 3D pose 3D warp 3D both
(ours)

Table 2. Qualitative comparison to a mesh-model approach and to
ablation models.
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