
Handwriting Recognition with Large Multidimensional Long Short-Term Memory
Recurrent Neural Networks

Paul Voigtlaender, Patrick Doetsch, Hermann Ney
Human Language Technology and Pattern Recognition, Computer Science Department

RWTH Aachen University
52056 Aachen, Germany

Email: {voigtlaender, doetsch, ney}@cs.rwth-aachen.de

Abstract—Multidimensional long short-term memory recur-
rent neural networks achieve impressive results for handwriting
recognition. However, with current CPU-based implementa-
tions, their training is very expensive and thus their capac-
ity has so far been limited. We release an efficient GPU-
based implementation which greatly reduces training times
by processing the input in a diagonal-wise fashion. We use
this implementation to explore deeper and wider architectures
than previously used for handwriting recognition and show
that especially the depth plays an important role. We outper-
form state of the art results on two databases with a deep
multidimensional network.

Keywords-MDLSTM; LSTM; Long Short-Term Memory;
Recurrent Neural Network; Handwriting Recognition;

I. INTRODUCTION

Neural networks have become a key component in modern
handwriting and speech recognition systems. While feedfor-
ward neural networks only use a limited and fixed amount
of context of the input, recurrent neural networks (RNNs)
can in principle make use of an arbitrary amount of context
by storing information in their internal state. In particular,
long short-term memory recurrent neural networks (LSTM-
RNNs) have been very successful [1], [2], [3]. The LSTM
architecture allows the network to store information for
longer amounts of time and avoids vanishing and explod-
ing gradients [4]. While normal LSTM-RNNs only use a
recurrence over one dimension (the x-axis of an image or
the time-axis for audio), multidimensional long short-term
memory recurrent neural networks (MDLSTM-RNNs) [5]
use a recurrence over both axes of an input image, allowing
them to model the writing variations on both axes and to
directly work on raw input images.

Recently, handwriting recognition competitions were won
by MDLSTM-RNNs (e.g. [6], [7]) and very recently MDL-
STM networks have also been shown to yield promising
results for speech recognition [8]. However, the MDLSTM
networks used for handwriting recognition in prior work,
e.g. Pham et al. [9] who also use the same databases as
we do, seem to be relatively small. One reason for this
might be that usually CPU implementations are used for
training which lead to high runtimes, e.g. Strauß et al. report,

that the training of a single network usually lasts several
weeks [6]. To the best of our knowledge, so far there is
no publicly available GPU implementation of MDLSTM. In
this work, we fill this gap and create an efficient GPU-based
implementation which is described in Section IV and made
publicly available.

We show that for deeper networks, a simple weight
initialization scheme with fixed standard deviation results
in convergence issues which can be solved by using the
initialization scheme by Glorot et al. [10]. Furthermore, we
use our implementation to train much larger and deeper
networks as typically used for handwriting recognition and
show that the results can thereby be substantially improved.

II. MULTIDIMENSIONAL LONG SHORT-TERM MEMORY
FOR HANDWRITING RECOGNITION

A multidimensional recurrent neural network (MDRNN)
is a generalization of a recurrent neural network, which
can deal with higher-dimensional data such as videos (3D)
or images (2D). Here we restrict ourselves to the two
dimensional case which is commonly used for handwriting
recognition tasks. A 2D-RNN scans the input image along
both axes and produces a transformed output image of the
same size. The hidden state h(u, v) for position (u, v) of an
MDRNN layer is computed based on the previous hidden
states h(u−1, v) and h(u, v−1) of both axes and the current
input x(u, v) by

h(u, v) = σ(Wx(u, v) +Uh(u− 1, v) + V h(u, v− 1)+ b),

where W , U and V are weight matrices, b a bias vector
and σ a nonlinear activation function. Like in the 1D case,
MDLSTM introduces an internal cell state for each spatial
position which is protected by several gates. The use of
LSTM allows the network to exploit more context and leads
to more stable training. It is common practice to use four
parallel MDLSTM layers which each process the input in
one of the four possible directions, e.g. from the top left
to the bottom right. The four directions are later combined
so that at every spatial position the full context from all
directions is available.

The basic neural network architecture used in this work
is depicted in Fig. 1. Similar to prior work [9], [6], [5],
we stack multiple layers of alternating convolution and
multidirectional MDLSTM and after the last MDLSTM
layer, the two-dimensional sequence is collapsed to a one-
dimensional sequence by summing over the height axis.
After the collapsing, a softmax layer with a Connectionist
Temporal Classification (CTC) [11] loss is used to handle
the alignment between the input and the output sequence.

In contrast to Pham et al. [9], we use max pooling instead
of strided convolutions, because we can afford the higher
computational complexity due to the GPU implementation
and max pooling is a standard component of many well-
performing computer vision systems (e.g. [12], [13]). Addi-
tionally, we apply the first convolution directly to the input
image and don’t divide it into 2x2 blocks. Another difference
is that we average the four directions and then feed them to
a single convolutional layer instead of having one separate
convolutional layer for each direction. Additionally, we
found that the training can be very unstable with standard
MDLSTM cells, as the internal state can quickly increase
over time when two forget gates (one for each direction) are
used [14]. Hence, we replaced them by stable LSTM cells,
which were introduced by Leifert et al. [14] and solve this
problem, for all experiments in this paper.

To keep the number of hyperparameters manageable, we
fix all filter sizes to 3x3 and max pooling is always applied
in non-overlapping blocks of 2x2. We use dropout of 0.25
for the forward connections of all convolutional layers,
MDLSTM layers and the output layer, except for the first
convolutional layer, where we don’t use dropout as we don’t
want to drop the single color channel of the input image.
Additionally, we only consider layer sizes which increase
linearly with the layer index, i.e. layers get wider when
they are closer to the output layer. For example, a network
width of 15n, where n is the layer index, for the network
of Fig. 1 means that the lowest convolutional layer has 15
feature maps, the first MDLSTM layer has 30 hidden units
per direction, the second convolutional layer has 45 feature
maps and so on. We call this model with a width of 15n the
basic model and use it for several experiments later on.

III. DATABASES

We used two databases for experiments. The IAM
database [15] consists of 6,482, 976 and 2,915 lines of
English handwriting for the training, development and evalu-
ation sets. The line images of the training set have an average
width of 1,781 pixels with 152 pixels standard deviation
and an average height of 124 pixels with 34 pixels standard
deviation. We used a smoothed word-based trigram language
model with a perplexity of 420 on the training set and an
out of vocabulary rate of 4% on the development set. The
language model was combined with a 10-gram character
language model to deal with out of vocabulary words [16].

The RIMES database [17] consists of 11,279 lines of
French handwriting for training and 778 lines for evaluation.
The line images of the training set have an average width of
1,665 pixels with 553 pixels standard deviation and a height
of 160 pixels with 36 pixels standard deviation. We used a
4-gram word-based language model with a perplexity of 23.

IV. IMPLEMENTATION

As a direct implementation of MDLSTM in Theano using
nested calls of scan, i.e. Theano’s mechanism for loops,
showed poor performance, we decided to implement it
directly using CUDA and cuBLAS. Our GPU-based imple-
mentation is made freely available for academic research
purposes as part of RETURNN, the RNN training software
developed by our institute, and has already been briefly
described in the corresponding publication [18]. We achieve
good performance by pulling the non-recurrent parts of the
computations out of the loops for the recurrences, using
custom CUDA kernels for the MDLSTM gating mechanism
and reusing memory wherever possible.

In previous (CPU-based) implementations [19], the image
is processed row-wise in an outer loop and column-wise in
an inner loop to make sure that for every pixel both prede-
cessor pixels are processed before reaching it. However, we
noticed that all pixels on a common diagonal of an image
can be processed in parallel without violating this constraint
(see Fig. 2). Hence, we process images diagonal-wise and
also process multiple images and the four directions of
multidirectional MDLSTMs simultaneously to exploit the
massive parallelism offered by modern GPUs. Note that
very recently and independently of this work, a similar
parallelization scheme based on the idea to process images
diagonal-wise has been proposed by van den Oord et al.
[20]. In their implementation, the input map of an MDLSTM
layer is explicitly skewed to transform the diagonals into
columns which facilitates the computations. However, in
our implementation this transformation is not needed, as
we use batched cuBLAS operations which take an array
of pointers, which point to the pixels on the diagonal,
as arguments. Additionally, we make our implementation
publicly available. In Stollenga et al. [21], parallelization is
achieved by using a pyramidal connection topology which
is easier to implement efficiently, but changes the available
spatial context.

In Table I, we compare the runtime of the basic model for
different mini-batch sizes with a GTX Titan X GPU on IAM.
One can see, that with moderate batch sizes the runtime per
epoch can be improved significantly, but at some point, the
runtime almost saturates to roughly 15 minutes per epoch,
possibly because the GPU is fully utilized. For comparison,
we trained a similar network using RNNLIB [19] with an
Intel Core i7-870 processor. RNNLIB supports only single-
threaded CPU training and takes roughly three days for one
epoch on the IAM dataset. Hence, without an efficient GPU

Figure 1: The basic network architecture used in this paper. The input image on the left is processed pixel-by-pixel using
a cascade of convolutional, max-pooling and MDLSTM layers, and finally transcribed by a CTC layer on the right. Figure
adapted from Pham et al. [9].

.....

Softmax

CTC

Input Image

Convolution
 +Max Pool
 +Tanh

MDLSTM

Average

Collapse
Convolution
 +Max Pool
 +Tanh

MDLSTM

Average MDLSTM

Average
Convolution
 +Max Pool
 +Tanh

Figure 2: MDLSTM dependencies and order of computation.
(a) The incoming arrows to a pixel have their origins at
pixels which are needed for the computation of the current
pixel. (b) Naive order of computation: the numbers indicate
the order of computation which is from top to bottom, from
left to right, one pixel at a time. (c) Diagonal order of
computation: all pixels on a common diagonal are computed
at the same time.

(a)

1 2 3

4 5 6

7 8 9
(b)

1 2 3

2 3 4

3 4 5
(c)

Table I: Speed and memory consumption for different batch
sizes (i.e. an upper limit on the number of pixels in a mini-
batch) using the basic model. The runtime column gives the
duration for one epoch on the IAM corpus.

Batch size Imgs/batch Runtime[min] Pixels/sec Memory[GB]
1 image 1.00 54.3 0.38M 1.06

0.5M 1.53 41.5 0.49M 1.06
1.0M 3.26 24.8 0.82M 1.66
2.5M 7.81 16.5 1.24M 3.93
3.5M 10.64 15.0 1.36M 5.64
5.0M 14.88 14.5 1.41M 9.11

based implementation, the experiments in this paper would
not have been possible in a reasonable amount of time.

V. TRAINING AND WEIGHT INITIALIZATION

For optimization, we use Adam [22] with incorporated
Nesterov momentum [23]. We start with a learning rate of
0.0005 and decrease it to 0.0003 in epoch 25 and to 0.0001
in epoch 35. Note that for a minibatch of multiple images,

we sum over the CTC losses for every image and do not
normalize by the batch size. We do not use any truncation
or clipping of gradients. All following experiments are done
on GTX 980 GPUs. In order to stay within the 4GB GPU
memory limit for large networks, we restrict the batch size to
600k pixels for all networks, to keep the results comparable.
During the training, we measure the CTC objective function
value and the label error rate, i.e. the lowest character error
rate of the network itself without lexicon or language model,
on a holdout set of 10% of the training data. Training stops,
when both measures do not improve for 20 epochs. For most
networks, less than 80 epochs were necessary.

Unless stated otherwise, the images are used as input
without any resizing, only a padding of 15 white pixels are
added on all four sides of the images. The gray values have
been linearly rescaled to values between 0 and 1. Images
for which the output sequence have a shorter length than the
number of characters in the reference are a problem during
training, as they cannot be transcribed correctly by the CTC
output layer. Hence, we decided to remove the 10 affected
training images from RIMES, while on IAM this problem
didn’t occur.

In Pham et al. [9], all network weights are initialized
by a normal distribution with zero mean and standard
deviation 0.01 (called normal initialization in the follow-
ing). Especially when trying to train deeper networks, we
often experienced slow convergence with this initialization
scheme. Hence, we tried the popular initialization scheme
proposed by Glorot et al. [10]. In this scheme, the weights
are initialized with a uniform distribution given by

W ∼ U

(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
,

where nin and nout are the number of inputs of outputs
of the layer. We performed several runs of training with a
relatively large network with 9 hidden layers and both weight

initialization schemes to study the effect of the weight
initialization for deep networks (see Fig. 3). The difference
between multiple curves for the same initialization is only
the random seed used for initialization. In the case of
the normal initialization, the seed has a strong influence
on the training progress, and convergence is often very
slow. On the contrary, when using the initialization by
Glorot et al. [10], the different runs show little variance
and converge much faster. We also experimented with an
orthogonal initialization based on Saxe et al. [24], which
worked substantially better than the normal initialization, but
slightly worse than the Glorot initialization. Consequently,
we adopted the initialization by Glorot et al. for all further
experiments.

Figure 3: Comparison of weight initializations on the IAM
database. The green dotted curves show the training progress
in terms of label error rate for networks initialized with
a normal distribution with fixed standard deviation and
different random seeds. The red lines show the training
progress with Glorot initialization and different seeds. The
Glorot initialization leads to much faster convergence and
less dependence on the seed.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Normal init

Glorot init

epoch

label
error

VI. EXPERIMENTS

In order to study the effect of preprocessing and network
topology, particularly the effect of the width and depth of the
network, we conduct experiments on the IAM database in-
troduced in Section III. After identifying a well-performing
setup, we also evaluate it on the RIMES database to verify
that the setup performs well across different databases.

For recognition, we used the RWTH Aachen University
Speech Recognition System [25], [26]. We emulated the
CTC topology in a hybrid hidden Markov model fashion
by expressing the state emission probabilities as rescaled
posteriors. We then used a regular HMM decoder with an
appropriately adjusted number of states and transition proba-
bilities. All recognitions were performed on paragraph level

Table II: Comparison of preprocessing methods. Deslanting
alone without contrast normalization yields the best results.

Preprocessing method WER[%] CER[%]
dev eval dev eval

Raw 8.5 11.0 3.0 4.3
Deslanted 8.0 10.2 2.5 3.8
Contrast norm. 8.2 10.7 2.8 4.1
Deslanted + contrast norm. 8.7 10.3 2.7 3.9

to include additional language model context. We performed
recognitions with the models from different epochs including
the epochs with the lowest CTC objective function value
and the lowest label error rate. Additionally, the language
model scale, prior scale and word insertion penalty were
tuned to minimize the word error rate on the development
set. Performance is measured in word error rate (WER) and
character error rate (CER).

A. Preprocessing

In Bluche et al. [27], the authors found that preprocessing
was not helpful for their MDLSTM optical model on an
Arabic handwriting recognition task, while in Strauß et
al. [6], several preprocessing steps were used. Hence, we
decided to perform further experiments. In a first experi-
ment for preprocessing, we considered deslanting the line
images and contrast normalization using the algorithms
from Kozielski et al. [28]. We used the basic network
topology to compare all four possible combinations of these
preprocessing methods in Table II. Contrast normalization
in isolation provides a small gain, but using only deslanting
yielded better results than combining both. Consequently,
for all further experiments, we used the deslanted images
without contrast normalization.

B. Topology

Compared to one-dimensional LSTM networks, which
commonly have more than 10 million parameters (e.g. [2]),
the MDLSTM networks used for handwriting recognition
are usually relatively small, possibly also because the sizes
of the networks are restricted by the high runtime of the
used CPU implementations. For example, the network used
in Pham et al. [9] has roughly 142k parameters, while our
basic model has 766k parameters. Hence, we study the effect
of width and depth on the WER.

In a first experiment, we vary the number of hidden units
per layer from 5n to 30n while keeping the number of
hidden layers fixed. The results in Table III show that a
too small hidden layer size severely hurts the recognition
performance, but when the layer sizes are large enough,
further increasing them yields little differences and can even
hurt.

Next, we vary the number of hidden layers and the
position of the max pooling operations while keeping the
hidden layer sizes fixed at 15n where n is the layer index.

Table III: Comparison of different network widths. 5n means
that the number of hidden units in the nth layer is 5n.

Network Params WER[%] CER[%]
dev eval dev eval

5n 88k 9.9 12.1 3.3 4.6
10n 342k 8.4 10.3 2.7 3.9
15n 766k 8.0 10.2 2.5 3.8
20n 1.35M 8.3 10.5 2.5 3.9
30n 3.04M 8.3 10.2 2.6 3.8

When changing the network topology, we always stack
alternating convolution and MDLSTM layers as before. The
combination of a convolutional layer and a MDLSTM layer
can be seen as a building block, only the number of these
blocks and the presence or absence of max pooling for each
block is changed. We describe a network architecture by a
string like LP-LP-LP-L-L, where LP is such a building block
with max pooling and L is a building block without max
pooling. Note that the number of parameters also strongly
increases when increasing the depth, as the layer size is
scaled proportional to the layer index. Since we are mainly
interested in the effect of the depth here and we showed
before that simply increasing the width of the network can
sometimes even hurt performance, we decided to limit the
number of hidden units per layer to a maximum of 120.
The results in Table IV indicate that the positions of the
max pooling layers only play a minor role, while increasing
the depth from two to a total of five blocks of convolution
and MDLSTM, i.e. ten hidden layers, greatly improves the
results from a WER of 10.2% to 9.3% on the evaluation set.
However, the 12 layer network again performs worse.

In addition to changing the width and the depth of the
network, we also tried to replace the tanh nonlinearity for
the convolutional layers with rectified linear units and the
recently proposed exponential linear unit [29], but did not
observe improvements.

From these experiments, it can be seen, that tuning the
network topology, in particular the depth of the network,
is important to achieve good performance and just strongly
increasing the width does not lead to good results. Clearly,
there is still a lot room for improvement of the architecture.

C. Final Results

Our best result on IAM is achieved by the ten layer
network of the last subsection which yields a WER of
7.1% on the development set and 9.3% on the evaluation
set. Table V compares our results to previously published
results on IAM. Doetsch et al. [2] used a modified 1D
LSTM network architecture. Voigtlaender et al. [30] used
1D LSTM networks and applied a sequence-discriminative
training criterion which could also be applied to our model
for further improvements. Pham et al. [9] used a smaller
MDLSTM optical model and no open vocabulary approach

Table IV: Comparison of different network topologies. The
depth of the network and the position of max pooling is
varied. LP stands for a block of convolution and MDLSTM
with max pooling and L stands for such a block without
pooling. The deep networks with ten hidden layers achieve
the best results.

Network Hidden Params WER[%] CER[%]
layers dev eval dev eval

LP-LP-LP 6 766k 8.0 10.2 2.5 3.8
LP-L-LP-LP 8 1.68M 8.0 10.0 2.5 3.6
LP-LP-L-LP 8 1.68M 8.2 10.4 2.8 4.0
LP-LP-LP-L 8 1.68M 8.4 10.4 2.5 3.7
LP-LP-LP-L-L 10 2.63M 7.1 9.3 2.4 3.5
LP-L-LP-L-LP 10 2.63M 7.2 9.3 2.4 3.5
LP-L-LP-L-LP-L 12 3.81M 8.1 9.7 2.6 3.6

Table V: Comparison of the proposed system to results
reported by other groups on the IAM database.

System WER[%] CER[%]
dev eval dev eval

Our system 7.1 9.3 2.4 3.5
Doetsch et al. [2] 8.4 12.2 2.5 4.7
Voigtlaender et al. [30] 8.7 12.7 2.6 4.8
Pham et al. [9] 11.2 13.6 3.7 5.1

for recognition. For a fairer comparison, we also performed a
closed vocabulary recognition which led to WERs of 10.1%
on the development set and 11.7% on the evaluation set.

For RIMES, we trained the same network which achieved
the best result on IAM and used the same preprocessing (i.e.
only deslanting). This setup yielded a WER of 11.3% on
the RIMES evaluation set. Table VI compares this result to
previously published results on RIMES. The systems of the
other publications in the table are the same as for IAM.

It can be seen, that on both corpora our large MDLSTM
optical model achieves significant improvements both over
one-dimensional LSTM models and over previously used
smaller MDLSTM models.

VII. CONCLUSION

We presented our efficient GPU-based implementation of
MDLSTM and showed that the network depth plays an im-
portant role for good performance. We trained deep networks
with up to ten hidden layers and achieved significant perfor-
mance improvements outperforming state of the art results
on two databases. However, we think that these experiments
are just the starting point for further progress in handwriting

Table VI: Comparison of the proposed system to results
reported by other groups on the RIMES evaluation set.

System WER[%] CER[%]
Our system 9.6 2.8
Doetsch et al. [2] 12.9 4.3
Voigtlaender et al. [30] 12.1 4.4
Pham et al. [9] 12.3 3.3

recognition. With the help of our implementation, many
more hyperparameters and novel architectural components
like deep residual networks [13] can be quickly explored.
Additionally, our software provides a general framework
for training, from which also other applications like speech
recognition or image segmentation can benefit in the future.

ACKNOWLEDGMENT

The authors would like to thank Mahdi Hamdani for help
with the open vocabulary recognition setup.

REFERENCES

[1] A. Graves, “Supervised sequence labelling with recurrent neural
networks,” Ph.D. dissertation, Technical University Munich, 2008.

[2] P. Doetsch, M. Kozielski, and H. Ney, “Fast and robust training
of recurrent neural networks for offline handwriting recognition,” in
International Conference on Frontiers in Handwriting Recognition,
Sep. 2014, pp. 279–284.

[3] X. Li and X. Wu, “Constructing long short-term memory based deep
recurrent neural networks for large vocabulary speech recognition,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing, Apr. 2015, pp. 4520–4524.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[5] A. Graves and J. Schmidhuber, “Offline handwriting recognition with
multidimensional recurrent neural networks,” in Advances in Neural
Information Processing Systems 21, 2008, pp. 545–552.

[6] T. Strauß, T. Grüning, G. Leifert, and R. Labahn, “Citlab ARGUS for
historical handwritten documents,” arXiv preprint arXiv:1412.3949,
2014.

[7] E. Grosicki and H. ElAbed, “ICDAR 2009 handwriting recognition
competition,” in Proc. of the Int. Conf. on Document Analysis and
Recognition, 2009.

[8] J. Li, A. Mohamed, G. Zweig, and Y. Gong, “Exploring multidimen-
sional lstms for large vocabulary asr,” in 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing, March 2016.

[9] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dropout
improves recurrent neural networks for handwriting recognition,” in
International Conference on Frontiers in Handwriting Recognition,
2014.

[10] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics, 2010.

[11] A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber, “Connec-
tionist temporal classification: labelling unsegmented sequence data
with recurrent neural networks,” in Proceedings of the International
Conference on Machine Learning, 2006, pp. 369–376.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, 2012, pp. 1097–1105.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” arXiv preprint arXiv:1512.03385, 2015.

[14] G. Leifert, T. Strauß, T. Grüning, and R. Labahn, “Cells
in multidimensional recurrent neural networks,” arXiv preprint
arXiv:1412.2620, 2014.

[15] U.-V. Marti and H. Bunke, “The IAM-database: an english sentence
database for offline handwriting recognition,” International Journal
of Document Analysis and Recognition, vol. 5, no. 1, pp. 39–46, 2002.

[16] M. Kozielski, D. Rybach, S. Hahn, R. Schlüter, and H. Ney, “Open
vocabulary handwriting recognition using combined word-level and
character-level language models,” in Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing, May 2013,
pp. 8257–8261.

[17] E. Augustin, J.-m. Brodin, M. Carr, E. Geoffrois, E. Grosicki, and
F. Prłteux, “RIMES evaluation campaign for handwritten mail pro-
cessing,” in Proceedings of the Workshop on Frontiers in Handwriting
Recognition, no. 1, 2006.

[18] P. Doetsch, A. Zeyer, P. Voigtlaender, I. Kulikov, R. Schlüter,
and H. Ney, “RETURNN: The RWTH extensible training frame-
work for universal recurrent neural networks,” arXiv preprint
arXiv:1608.00895, 2016.

[19] A. Graves, “RNNLIB: A recurrent neural network library for
sequence learning problems.” [Online]. Available: http://sourceforge.
net/projects/rnnl/

[20] A. V. D. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel
recurrent neural networks,” arXiv preprint arXiv:1601.06759, 2016.

[21] M. F. Stollenga, W. Byeon, M. Liwicki, and J. Schmidhuber, “Par-
allel multi-dimensional lstm, with application to fast biomedical
volumetric image segmentation,” in Advances in Neural Information
Processing Systems 28, 2015, pp. 2998–3006.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[23] T. Dozat, “Incorporating Nesterov momentum into Adam,” Stanford
University, Tech. Rep., 2015. [Online]. Available: http://cs229.
stanford.edu/proj2015/054 report.pdf

[24] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to
the nonlinear dynamics of learning in deep linear neural networks,”
arXiv preprint arXiv:1312.6120, 2013.

[25] D. Rybach, S. Hahn, P. Lehnen, D. Nolden, M. Sundermeyer,
Z. Tüske, S. Wiesler, R. Schlüter, and H. Ney, “Rasr - the rwth
aachen university open source speech recognition toolkit,” in IEEE
Automatic Speech Recognition and Understanding Workshop, Dec.
2011.

[26] S. Wiesler, A. Richard, P. Golik, R. Schlüter, and H. Ney, “Rasr/nn:
The rwth neural network toolkit for speech recognition,” in IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing,
May 2014, pp. 3313–3317.

[27] T. Bluche, J. Louradour, M. Knibbe, B. Moysset, F. Benzeghiba,
and C. Kermorvant, “The A2iA arabic handwritten text recognition
system at the openhart2013 evaluation,” in International Workshop
on Document Analysis Systems (DAS), 2014.

[28] M. Kozielski, P. Doetsch, and H. Ney, “Improvements in rwth’s sys-
tem for off-line handwriting recognition,” in International Conference
on Document Analysis and Recognition. IEEE, 2013, pp. 935–939.

[29] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[30] P. Voigtlaender, P. Doetsch, S. Wiesler, R. Schlüter, and H. Ney,
“Sequence-discriminative training of recurrent neural networks,” in
IEEE International Conference on Acoustics, Speech, and Signal
Processing, Apr. 2015, pp. 2100–2104.

