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Abstract

We present an algorithm for multi-person tracking-by-
detection in a particle filtering framework. To address the
unreliability of current state-of-the-art object detectors, our
algorithm tightly couples object detection, classification,
and tracking components. Instead of relying only on the
final, sparse output from a detector, we additionally employ
its continuous intermediate output to impart our approach
with more flexibility to handle difficult situations. The re-
sulting algorithm robustly tracks a variable number of dy-
namically moving persons in complex scenes with occlu-
sions. The approach does not rely on background modeling
and is based only on 2D information from a single cam-
era, not requiring any camera or ground plane calibration.
We evaluate the algorithm on the PETS 09 tracking dataset
and discuss the importance of the different algorithm com-
ponents to robustly handle difficult situations.

1. Introduction

Multi-people tracking plays an important role in various
computer vision applications, such as surveillance, sports
video analysis, traffic control, and robot navigation. A
tracking algorithm aims to continuously estimate the posi-
tions of a variable number of targets in a scene over time.
The resulting trajectories can then provide the basis for
scene understanding, for example to automatically recog-
nize and interpret the behavior of agents.

Typically, two major components can be distinguished in
tracking algorithms: A bottom-up process deals with target
representation and localization, trying to cope with changes
in the appearance of the tracked targets, while a fop-down
process performs data association and filtering to deal with
object dynamics. Correspondingly, our approach is based
on combining a state-of-the-art pedestrian detector (bottom-
up) with particle filtering (top-down). To complement the
generic object category knowledge from the detector, our
algorithm trains instance-specific classifiers online, which
are used to evaluate each detection-target pair for data as-
sociation in each frame. Our method is based only on 2D
information from one single camera and does not require
any camera or ground plane calibration.

In contrast to background modeling-based trackers,
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Figure 1: Tracking results for the PETS’09 datasets.

tracking-by-detection methods are generally robust to mov-
ing cameras and have therefore become increasingly pop-
ular [2, 9, 14, 15, 22]. Such approaches involve the con-
tinuous application of a detection algorithm in individual
frames and the association of detections across frames. The
main challenge is to deal with the unreliability of the sparse
detector output, because object detectors typically deliver
only a discrete set of responses and usually yield false pos-
itives and miss detections.

While many recent tracking-by-detection approaches ad-
dress the resulting data association problem by optimizing
detection assignments over a larger temporal window in an
offline step [1, 3, 10, 14, 16], particle filters offer a frame-
work for representing the tracking uncertainty in a Marko-
vian manner. Such an approach is more suitable for time-
critical, online applications, because only information from
past frames is used.

Previous methods for multi-object tracking-by-detection
rely only on the final, sparse output from an object detec-
tor [5, 8, 15, 22]. In contrast, our approach integrates the de-
tector into the tracking process by monitoring its continuous
detector confidence, which we use as a graded observation
model. This idea follows the intuition that by avoiding hard
detection decisions, we can impart our tracking approach
with more flexibility to handle difficult situations. Further-
more, our method evaluates detection-target pairs for data
association not only based on the spatial distance like pre-
vious methods [5, 15], but based on the output of classifiers
that are trained online (similar to Song et al. [19], which is
however based on background modeling).

In this paper, we demonstrate the potential of our Marko-
vian tracking-by-detection algorithm, which is based only
on 2D information from a single, uncalibrated camera, by



evaluating it on the PETS’09 tracking datasets (S2, view
001, see Fig. 1). A detailed discussion illustrates the influ-
ence and limitations of each algorithm component.

2. Related Work

In recent years, a vast amount of work on multi-object track-
ing has been presented. Generally, the methods can be di-
vided either in global approaches that aim to construct tra-
jectories offline after all observations are received, or in lo-
cal, Markovian approaches that estimate the position of a
target by considering only information from the past (e.g.,
from the last time step).

Tracking algorithms based on background modeling
(e.g., [19, 20]) are usually capable of online processing.
By combining foreground information from multiple views,
they can be made more robust to occlusions [3, 12]. How-
ever, the cameras need to be static and the methods rely
on ground plane or camera calibration. In contrast, our ap-
proach is based only on 2D information from one single,
potentially moving, uncalibrated camera.

The state space uncertainty of a target can be represented
using particle filters [11]. Later extensions include a rep-
resentation of the joint state space for multiple targets [21]
and the combination with an object detector for tracking-by-
detection [8, 15]. As runtime directly scales with the num-
ber of particle evaluations, those approaches face a dilemma
when additional targets appear. They can either spend an
exponentially growing number of particles on representing
the joint state space sufficiently well, or they can guarantee
a constant runtime by keeping the number of particles fixed,
at the price of lowering approximation accuracy. This can
be solved by using independent particle sets for each tar-
get [5], at the cost of potential problems with occlusions.

Using independent trackers requires solving a data as-
sociation problem to assign measurements to multiple tar-
gets. Classical approaches for this include Joint Probabilis-
tic Data Association Filters (JPDAF) [7, 18] and Multi-
Hypothesis Tracking (MHT) [17]. While some tracking-
by-detection algorithms implement a first-order Markovian
approach to perform data association based only on previ-
ous observations from the last time step [5, 8, 15, 22], sev-
eral recent methods address the problem globally by opti-
mizing detection assignments over a larger temporal win-
dow [1, 10, 14, 16].

3. Tracking using the Detector Output

Our approach is based on using the output of an object
detector for the observation model of a particle filter. A
general problem with this is the reliability of the resulting
detections; i.e., not all persons are detected in each frame
(missing detections) and some detections are not caused
by a person (false positive detections). This can be seen

(b) Intermediate Output: Continuous Detector Confidence Density.

Figure 2: (a) The final output of an object detector
(HOG [6]) contains false positives and missing detections.
(b) The continuous detector confidence density (shown as
heat map) often contains useful information at the location
of missing detections, which we use for tracking.
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Figure 3: Our algorithm achieves robustness through a care-
ful interplay between object detection, classification, and
target tracking components (see text).

in Fig. 2(a), where incorrect detections are often found on
background structures and around the road sign in the cen-
ter of the image. Note also the different sizes of the hy-
pothesized detections. Because no 3D or scene information
(e.g., ground plane) is available, the detector does not know
where to expect objects of which size in the image.

Our algorithm addresses this uncertainty through a care-
ful interplay between object detection, classification, and
target tracking components. In the following, we shortly
describe our approach (see Fig. 3 for an overview), refer-
ring to [4] for details.

Particle Filter. As a basic framework, we use a parti-
cle filter for each target, which estimates the target’s time-
evolving posterior distribution with a weighted set of parti-
cles. Each particle = {x,y, u, v} encodes the 2D image
position (z, y) and the velocity components (u, v).

We automatically initialize a particle filter for each tar-



Figure 4: The initialization and termination region of our
algorithm for the PETS’09 S2.L.1 dataset (view 001), shown
in red.

get in a certain image region (see Fig. 4). To be initialized,
a target must be detected with similar position and size in
two out of three subsequent frames and must neither be oc-
cluded by more than 20% nor associated with an already
existing tracker. Similarly, a tracker only survives for k = 5
frames without associated detection in this region and is au-
tomatically terminated otherwise.

The particles are propagated with a constant-velocity
motion model. Their weight is updated using the obser-
vation model described in the following (for details about
particle filtering itself, we refer to the extensive literature).

Observation Model. The conditional likelihood
(ye \:cgl)) of a new observation of a particle ¢ is estimated
using three independent terms. In Sec. 4, we demonstrate
the importance of each term for different situations. First,
the detection term guides the particles of one tracker based
on maximally one (carefully selected) associated detection
per frame (see next paragraph). If a matching detection is
found, this term robustly guides the particles. Otherwise, it
will have no influence.

Although an object detector might not yield a (matching)
final detection for every target, a tracking algorithm could
still be guided using the intermediate output common to cur-
rent state-of-the-art detectors. This can be seen in Fig. 2(b),
where the intermediate output of the HOG detector is shown
to have a high density on some persons, although no fi-
nal detection is found. For sliding-window based detectors
(e.g., HOG [6]), such an intermediate output consists of the
continuous confidence density, which is accumulated before
applying non-maximum suppression. For feature-based de-
tectors (e.g., ISM [13]), it corresponds to the local voting
space density. The detector confidence density term of the
observation model estimates the detector confidence density
at the particle position.

Finally, the particles are additionally weighted by eval-
uating the bounding boxes represented by each particle us-
ing target-specific classifiers. For this purpose, a classifier
is trained online for each target (see next paragraph). In

(a) Initialization.

(b) Propagation.

Figure 5: The initial particles (a) are drawn from a Normal
distribution centered at the detection bounding box and are
propagated (b) with a constant velocity motion model.

contrast to the other terms, this classifier term uses color in-
formation, complementing the other terms that are based on
the detector output. This term adds additional robustness to
our approach when targets are only partially visible, and it
prevents the particle filter from drifting.

Data Association. One of the key factors of our algo-
rithm is that a final detection is only used to guide a particle
filter if it is very likely to belong to the respective tracking
target. For this purpose, each detection-target pair is eval-
uated in each frame, and our algorithm assigns at most one
detection to at most one tracker. A matching score matrix
describes the match between each detection and target, con-
sisting of the distance between the detection and each parti-
cle of a tracker and the score of a classifier trained online for
each target (see below). Then, a greedy algorithm iteratively
selects the pair with maximum score until no further valid
pair is available. Finally, only the associated detections with
a matching score above a threshold (set experimentally) are
used, ensuring that a selected detection is actually a good
match to a target.

The classifier consists of a boosted ensemble of weak
learners (similar to [9]), containing color histograms (red-
green-intensity, 3 bins per color channel) and local binary
pattern features. Patches used as positive training examples
are sampled from the bounding box of the associated detec-
tion. The negative training set is sampled from nearby tar-
gets, augmented by background patches. After each update
step, we keep the 50 most discriminative weak learners.

4. Detailed Implementation

Algorithm Parameters. The initial sample positions are
drawn from a Normal distribution (with standard deviation
o = 6 - scaleget pixels), centered at the detection bounding
box center (see Fig. 5). The initial target size corresponds to
the size of the detection, where scalege; 1s the factor of the
size compared to the detector training size (48 x 96 pixels



(a) S2.L3, Frame 18

(b) S2.L3, Frame 105

(c) S2.L3, Frame 151 (d) S2.L3, Frame 175

Figure 7: Visualization of the different observation model terms. Top: Final HOG detections (green) and intermediate
detector confidence density (heat map). Middle: Classifier output for the yellow tracker (heat map). Bottom: Particle output
for all targets, together with mean modes and associated detections (dashed with the respective color). Best viewed in color.

(a) S2.L1, Frame 10 (b) S2.L1, Frame 39
Figure 6: Heat map visualization of the classifier response
for the white target. The output becomes more discrimina-
tive over time because the classifier is continuously adapted
(compare the confidence on the background in a and b).

total, of which the person itself takes up 24 x 72 pixels). The
input images are resized from originally 768 x 576 pixels to
1280 x 960 pixels, such that the size of the persons better
corresponds to the detector training size. The initial motion
direction is set to be orthogonal to the closest image border
(with magnitude v = 24 - scalege; pixels).

In each frame, the process noise for each state variable is
independently drawn from zero-mean Normal distributions.
The standard deviations for the position and velocity noise

are set to 0 = 4 - scaleger and o = 12 - scaleger pixels,
respectively (i.e., about 10 and 30 pixels for a target with a
height of 180 pixels (scalegqe; = 2.5)). The size of a tracker
is set to the average of the last four associated detections.
To determine the current position of a target (represented by
the multi-modal particle distribution), the strongest mode is
found using mean-shift.

Classifier Training. The classifiers trained online for
one target result in a high score on the trained target itself
and relatively low scores on the background and the other
tracking targets. Because a classifier is only updated when
a detection is assigned to the tracking target that further-
more must not be occluded by another target, the classifiers
are becoming increasingly discriminative (see Fig. 6). Ad-
ditionally, we use the bounding boxes corresponding to the
mean modes of the nearest other trackers (maximally 6) and
background information as negative training samples for the
update. The classifiers help resolve ambiguities, especially
in the case of inter-person occlusions (e.g., see Figs. 6(b)
and 7), and they complement the detector output to guide
the particles.

Terms of the Observation Model. The balance be-
tween the different observation model terms is chosen such
that the ratio is about 20 : 2 : 1 between detection term,



detector confidence term and classifier term for a tracker
with associated detection. During a typical tracking cycle,
the contribution of each of the individual observation model
terms to the total particle weight can however differ signifi-
cantly. On average, a detection is selected and associated to
a tracking target in about every other frame for S2.L.1 and
in every fourth frame for S2.L2 and S2.L3.

In Fig. 7, we illustrate how the different complemen-
tary observation model terms help to robustly handle a dif-
ficult situation where a target is occluded and the detections
are unreliable. In Fig. 7(a), the yellow and magenta track-
ers have been initialized already and detections are associ-
ated in the current frame (bottom row; associated detections
are dashed with the color of the respective tracker). Also,
the detector confidence density is high on both targets (top
row). The classifiers return high scores on the trained tar-
gets, but also moderate values on the background and the
other targets (middle row; classifier output for the yellow
tracker). The particles are weighted according to the obser-
vation model (bottom row; the weights are proportional to
the color intensity). In the frame of Fig. 7(a), the detections
are very good (i.e., have a high confidence) and are used to
primarily guide the particle filters.

In Fig. 7(b), the yellow tracker is almost fully occluded
by the magenta tracker. Hence, our data association algo-
rithm correctly does not associate a detection to the yellow
tracker (Fig. 7(b), bottom row). The classifier output is low
because only a part of the target the classifier is learned
for is visible (middle row). However, because of the de-
tector confidence density, the particles remain in about the
same image region. In this situation, the particles are mainly
guided by the detector confidence density.

Later, the target of the yellow tracker becomes partially
visible again (see Fig. 7(c)). Still, the detector cannot ac-
cumulate enough evidence to detect the person (top row).
However, since the classifier output is very high on the visi-
ble part of the target (middle row), the particles are concen-
trated correctly on the correct, partially occluded target.

When more people appear (see Fig. 7(d)), the classifier
of the yellow tracker does not perfectly distinguish between
all persons, because their appearance is similar (middle
row). Therefore, a pure classifier-based tracking algorithm
(e.g., [2, 9]) would probably fail here, resulting in identity
switches. However, the HOG object detector returns a good
detection again that matches well with the learned appear-
ance of the target of the yellow tracker (bottom row).

In contrast, the magenta tracker is guided by final detec-
tions through the frames of Fig. 7, but relies on the detector
confidence density and the classifier terms in Fig. 7(d) (the
classifier output for the magenta tracker is not shown).

5. Evaluation

We evaluate our algorithm for the tracking tasks S2.L1,
S2.L2 and S2.L3, using the sequences from view 001 of
the PETS’09 dataset.!

5.1. PETS Tracking Task S2.L.1

All targets in the sequence S2.L1 are found and tracked by
our algorithm during a considerable length of 795 frames or
about 90 seconds. Although the sizes of the targets signif-
icantly change, no identity switches occur, as can be seen
from Fig. 9(a), where the complete trajectories from all
trackers are shown in the same image. Furthermore, the
tracker robustly handles the significant partial and complete
occlusions, which are caused by static objects and other
tracking targets, as well as the highly dynamic motion of
some targets, which are suddenly stopping, moving back-
wards, or in circles.

During the entire sequence, our method returns only 4
short false positive trajectories (marked by the red arrows in
Fig. 9(a)). They are caused by trackers that are erroneously
initialized because of persistent false positive detections in
the initialization region at the image borders.

The HOG detection algorithm does not consistently find
all pedestrians throughout the sequence (only about 80%
of all targets) and regularly produces false positive detec-
tions (about 50% of all detections), as can be seen in Figs. 7
and 8). Given the output of the object detector, the average
computation time per frame is around 1s.

In Fig. 8 (top row), we show a sequence of frames to
illustrate how our algorithm handles situations with severe
occlusions. In Fig. 8(a), all trackers are associated with a
detection. The target represented by the blue tracker then
moves towards the road sign and becomes occluded (see
Fig. 8(b)). Since no detection is available, the particles
propagate towards nearby areas of high detector confidence
density (i.e., to the target of the red tracker). After 50
frames, the target reappears from behind the road sign and
is detected again (see Fig. 8(c)). However, the detection is
not associated with the blue tracker yet, because the target
is still partially occluded and therefore the classifier score
is low. The more the target is visible again, the more parti-
cles represent the correct target, thanks to the classifier term
(see Fig. 8(d)). Finally, all targets are correctly found again
in Fig. 8(e).

5.2. PETS Tracking Tasks S2.1.2 and S2.L.3

For the two tracking tasks S2.L2 and S2.L.3, two predeter-
mined targets per sequence have to be tracked. Because our
algorithm automatically initializes particle filters on all de-
tected targets (i.e., not just for the targets required for this

For the complete results, please watch the accompanying videos:
www.vision.ee.ethz.ch/~bremicha/tracking/



(f) S2.L2, Frame 235

(g) S2.L2, Frame 264

(h) S2.L2, Frame 274 (i) S2.L2, Frame 285

Figure 8: Particle output (colored particles and their mean modes), HOG detections (green), associated detections (dashed).
First row: The object detector often returns false positive detections and does not find all targets. Although the red and
blue particle filters temporarily represent the same target (see (b), (c)), the tracking algorithm recovers after the occlusion (e).
Second row: The appearance of the targets changes because of sunlight, and the detector does not always find the targets
((g), (h)). Hence, the classifier does not adapt well to the new appearance, causing particle drift (4). However, some particles
remain on the correct target (/) because of the multi-modality of the particle filter, allowing the tracker to recover (i).

task), we manually select the corresponding result trajecto-
ries for the evaluation after running our algorithm.

These sequences S2.L.2 (length 436 frames) and S2.L3
(Iength 240 frames) mainly pose two challenges to our al-
gorithm. First, target appearance changes during the se-
quences. This is caused by different lighting conditions in
the different image areas or when a target turns with re-
spect to the camera position during the sequence (e.g., one
target is only visible frontally in the beginning, but turns
when walking in a different direction). Second, the people
in the crowd move very consistently, regularly occluding
each other. Therefore, identity switches are likely to hap-
pen. However, our algorithm manages to robustly handle
these problems as we demonstrate in the following.

The male target (blue in Figs. 9(b) and 10) is visible for
about 350 frames, during which it is heavily occluded some-
times and its appearance changes frequently. Still, our al-
gorithm tracks this person without identity switch. In Fig. 8
(bottom row), the particle output of the algorithm is shown
during the most critical phase when entering the well lit area
of the image. In this area, the target is only rarely detected
by the object detector (see Figs. 8(g) and 8(h)), thus the
classifier is not updated and does not adapt very well to
the changing appearance. However, because of the multi-
modality of the particle filter, some particles remain on the
correct target, although the strongest mode is temporarily on
another person (Fig. 8(g)). In Fig. 8(i), the tracker recovers
again, having the strongest mode of the particle distribution
on the correct target.

The female target (red in Figs. 9(b) and 10) leaves the
field of view for about 220 frames. When re-entering the
scene, the algorithm initializes a new tracker (green, see
Figs. 9(b) and 10), causing an identity switch. For the first
few frames after the reappearance, this tracker is located on
another person before switching to the correct target when
it gets fully visible.

To avoid that a new tracker is initialized for a previously
observed target that temporarily left the scene, the algorithm
would have to deactivate trackers instead of immediately
terminating them. Then, it could check for each target en-
tering the field of view whether the same target has been
observed before, and it could reactivate the corresponding,
already existing tracker. However, this is currently not im-
plemented.

In the sequence S2.1.3, our algorithm consistently tracks
the two targets (see Figs. 9(c) and 10), although the yel-
low target is completely occluded by the magenta target
for about 170 frames in the beginning of the sequence, as
shown in Fig. 7. Although the tracking task gets harder
when the targets join the approaching crowd, our algorithm
locates the correct targets very precisely most of the time
(see Fig. 10). Only when walking behind the road sign in
the middle of the field of view, the trackers are temporarily
slightly imprecise, but immediately recover when the tar-
gets become visible again and are detected.

To sum up, without carefully (but fully automatically)
selecting the detections that guide the particle filters, the
trackers would be misled by false positive detections or by



detections on other persons. For this purpose, the online
trained classifiers are of great help for data association. Dur-
ing an occlusion (i.e., if no matching detection is associated
with a tracker) or if the detector fails to detect person (miss-
ing detections), the tracker is mainly guided by the detector
confidence density term. Finally, if a target is only partially
visible, the classifiers help locate the particles precisely.

6. Conclusion

We presented an algorithm for Markovian multi-object
tracking-by-detection. The main ideas are to (1) carefully
select the final detections using online trained classifiers to
handle false positive detections, and to (2) exploit the con-
tinuous, intermediate output of state-of-the-art detection al-
gorithms to overcome missing detections. We discussed the
different components in detail, demonstrating their impor-
tance and limitations.

The target of this work was to demonstrate the capabil-
ities of a tracking-by-detection algorithm that relies only
on 2D image information from one single, uncalibrated
camera. Our algorithm achieved to successfully solve the
PETS’09 tracking tasks with high accuracy and precision.
However, the most important vulnerability of our algorithm
is its dependency on the detector output. Therefore, the
most potential to improve our algorithm is to support the ob-
ject detector by using a ground plane, camera calibration or
a scene model. Of course, also the tracking algorithm itself
could benefit from such scene-specific information. Sec-
ondly, the input from multiple, synchronized cameras could
be used for tracking, which would help especially to resolve
occlusion situations. However, both scene specific informa-
tion as well as multi-camera input is usually not available
for arbitrary data sources, limiting the application area of
such an extended algorithm.
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(a) S2.L1 (b) S2.L.2 (c) S2.L3

Figure 9: The resulting trajectories of all targets for the PETS’09 tracking tasks (view 001). In (a), the four short false positive
trajectories are denoted by the arrows. In (b) and (c), only the trajectories for the two predetermined targets are shown.

Figure 10: Exemplary tracking results for the PETS’09 tracking datasets: S2.L1 (fop), S2.L2 (middle) and S2.L3 (bottom).
Please watch the accompanying videos for the complete results.



