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Abstract

This paper proposes an approach for the semantic seg-
mentation and structural parsing of modular furniture
items, such as cabinets, wardrobes, and bookshelves, into
so called interaction elements. Such a segmentation into
functional units is challenging not only due to the visual
similarity of the different elements but also because of their
often uniformly colored and low-texture appearance. Our
method addresses these challenges by merging structural
and appearance likelihoods of each element and jointly op-
timizing over shape, relative location, and class labels us-
ing Markov Chain Monte Carlo (MCMC) sampling. We
propose a novel concept called rectangle coverings which
provides a tight bound on the number of structural elements
and hence narrows down the search space. We evaluate
our approach’s performance on a novel dataset of furniture
items and demonstrate its applicability in practice.

1. Introduction
Visual understanding of indoor scenes is a crucial task

for many applications in robotics. Most notably, the inter-
action of autonomous robots with complex indoor scenes
requires an accurate semantic labeling. While there have
been many approaches for a coarse labeling of entire indoor
scenes (e.g. [6, 15, 29, 12]), only very little work goes be-
yond an analysis on the object level [22].

In this paper, we want to address the logical next step
and provide a more detailed analysis of object semantics
(see Figure 2). We take advantage of the fact that many fur-
niture items exhibit a modular internal structure: They are
composed of a set of common interaction elements (doors,
drawers, or shelves) in a variable yet constrained (modular)
spatial configuration.

We present a first approach for the semantic segmenta-
tion of such modular furniture that is applicable to book-
shelves, wardrobes, office cabinets, etc. Given the front face
of a furniture item, our goal is to find and label the individ-
ual interaction elements (Figure 1). Here we focus on rect-

Figure 1: Our approach performs semantic segmentation
of modular furniture into doors (red), drawers (green), and
shelves (yellow).

angular front faces and the three most common interaction
elements: doors, drawers, and shelves.

Comparing the problem of furniture segmentation to the
problem of segmenting entire indoor scenes reveals several
new challenges: First, we are interested in a structured seg-
mentation that clearly defines the boundaries of the indi-
vidual interaction elements. A noisy pixel-wise segmenta-
tion would not be sufficient in order to infer the structural
information that is required for an interaction. Second, as
also noted by [34], traditional visual cues such as color and
texture are not particularly useful for labeling furniture as
their surfaces are often uniformly colored and have a simi-
lar textural appearance. Third, furniture items often include
additional decorative elements prohibiting simple rectangle
detection from being able to locate or even determine the
number of parts (See Figure 1).

We therefore propose a two-stage segmentation ap-
proach. In the first stage (Section 3), we generate an
over-complete set of interaction element proposals. Here,



Figure 2: For a given indoor scene (left) the bounding box
of the furnitures’ front face can be estimated e.g. by [16].
We rectify this bounding box which then serves as the input
to our pipeline (right).

over-complete means that for all interaction elements there
should be at least one matching proposal. Under the as-
sumption that all interaction elements are rectangular, each
proposal is a labeled and weighted rectangle. The weight is
proportional to the probability of the candidate being an in-
teraction element of a certain kind (i.e., a door, a drawer, or
a shelf). In the second stage of the approach (Section 4) we
select the set of proposals that forms the best modular se-
mantic segmentation of the furniture, i.e. the separation into
interaction elements. We formulate this proposal selection
as an energy minimization problem.
Contributions. 1) To the best of our knowledge, we pro-
pose the first approach devised for detailed segmentation
of modular furniture from single images. 2) One impor-
tant aspect when representing an object composed of a set
of parts is the size of the part set. We provide a novel ap-
proach to estimate tight bounds on this quantity. To that
end we estimate minimum and maximum coverings by ele-
ments through solving a sequence of quadratic integer pro-
gramming problems. 3) We propose a new classification ap-
proach based on a generative codebook. It is able to classify
furniture elements that are weakly textured but still share
class-specific structural traits. 4) We present a new furni-
ture dataset and corresponding ground truth annotations1.

2. Related Work
Segmentation approaches. Many segmentation ap-
proaches rely on pixel grouping based on feature similar-
ities [7, 17, 26, 9]. These basic segmentation approaches
do not take semantic information into account. Most work
done in order to incorporate semantic information, can
be assigned to one of two categories. The first category
of approaches groups neighboring pixels and then classi-
fies them [10]. The second category tries to incorporate
semantic information directly into the segmentation itself
[28, 2, 19, 20]. Unfortunately, the aforementioned meth-
ods just provide a noisy pixel-wise segmentation and do not

1www.vision.rwth-aachen.de/furniture

model the inherent structural properties of modular furni-
ture items.
Indoor scene parsing approaches. [14] and [33] exploit
the fact that man-made objects are mostly composed of rect-
angular elements. Their approach is closely related to ours
in the sense that we also generate an initial over-complete
set of rectangles and then arrange the current selection of
rectangles in the inference stage. However, their work does
not consider semantic information.
Facade parsing approaches. The problem of parsing
building facades into the architectural elements is similar
to our problem of furniture segmentation. Both – facades
and modular furniture items – show rectangular, grid-like,
recursive structures. One class of methods directly performs
a bottom-up analysis, either starting from a noisy segmenta-
tion [23] or by inferring repetitive structures [25]. Another
class of methods uses shape grammars [30] in order to com-
bine top-down semantic grammar rules with the bottom-up
shape cues derived from the image. In most cases, a suitable
grammar is manually designed to fit one particular style of
architecture [32, 24, 31, 27]. This keeps the parsing tech-
nique from generalizing well to similar problems. These
grammar based approaches are most powerful if the gram-
mar represents an underlying architectural style, where each
instance follows a relatively similar derivation. This is not
the case in our problem setting.
Furniture parsing. [21] addresses the problem of furni-
ture detection and pose estimation using an exact 3D CAD
model. [11] proposes joint 3D object and layout infer-
ence by explicitly modeling occlusion visibility and phys-
ical constraints. The inference of an 3D object heavily de-
pends on the 3D CAD model. In contrast to those methods,
our approach does not rely on any pretrained object models.

3. Interaction Element (IE) Proposals
In the following, we assume that we are given a single

image of a modular furniture from an uncalibrated camera.
Moreover, we assume that the furniture item has a rectan-
gular front face whose bounding box is known. For this we
rely on a preprocessing step (such as the method from [16]).

Using the bounding box of the furniture item’s front face,
we first approximately rectify the region of interest by com-
puting a homography that maps the front face to a rectangle
of approximately the same aspect ratio (Figure 2). The rec-
tified region of interest serves as the input to our pipeline.
This allows us to constrain the search to rectangular axis-
aligned interaction elements.

In the first stage of the algorithm we generate an over-
complete set of proposals with the goal of generating at
least one matching proposal for each interaction element
of the furniture item. Having an over-complete set of pro-
posals allows us to compute the semantic segmentation by
performing subset selection.



We generate the proposals in three steps: detection,
pruning, and weighting. We first perform a supervised ap-
proach to generate a semantic edge map, a binary image
that labels rectangle border pixels. Based on this seman-
tic edge map, we exhaustively search for rectangle candi-
dates. Then, we perform an unsupervised pruning step that
removes rectangles that are unlikely to correspond to IEs
of the furniture. Finally, we compute weights for all can-
didates and their corresponding labels, resulting in the final
pool of rectangle proposals.

3.1. IE Candidate Generation
Semantic edge map. Following the idea of Dollár et al.
[8] we predict edge pixels using a random forest [4]. In
contrast to performing general edge detection, the goal of
our semantic edge map is to identify only those edges that
belong to interaction element boundaries. We train an en-
semble of binary decision trees based on feature vectors
x = (x1, ..., xd)

T ∈ Rd. Two different kinds of random-
ness are used in the tree training process: Each tree is com-
puted on a randomly sampled subset of the training data and
the parameters of the tree nodes are optimized over a ran-
domly sampled subset of features. Each node v of the trees
is a simple decision stump comparing one entry of the fea-
ture vector xdv to a threshold θv . The leaf nodes store the
posterior probabilities for each class label. We stop growing
the tree when the number of samples in a node falls below
a threshold. As feature vector we use image patches of size
25×25 pixels defined over four channels: Intensity, deriva-
tives in x and y direction, and gradient magnitude. For pre-
dictions, the output of the different trees are combined via
weighted majority voting.
Candidate generation. Based on the semantic edge map,
we detect horizontal and vertical lines using the Hough
transform. By iteratively sampling two horizontal and two
vertical lines, we form rectangle hypotheses defined by the
convex hull of the four intersection points of the respective
lines. A hypothesis is accepted (i.e., a rectangle is detected)
if the maximum distance from any boundary pixel to the
closest edge pixel is small. This can be efficiently imple-
mented using a distance transform of the edge map. If the
number of iterations is sufficiently high, the candidate set
contains all IEs with high probability.

3.2. IE candidate Pruning
The candidate generation step yields a large set of rect-

angles, most of which do not correspond to actual interac-
tion elements. We perform an unsupervised pruning step to
greatly reduce the number of irrelevant rectangles.

As a side product of this candidate pruning we also ob-
tain lower and upper bounds on the possible number of in-
teraction elements of a furniture item. The following al-
gorithm is based on the idea that the correct set of non-
overlapping interaction elements should cover almost the

entire front face of the furniture item.
A “good” rectangle covering. Let Ω ⊂ R2 be the region
of interest (i.e. the rectangular front face of the furniture
item). A selection of K rectangles r1, ..., rK ⊂ Ω is an
(ε, δ)-rectangle covering of Ω if

1

|Ω|

∣∣∣∣∣
K⋃
k=1

rk

∣∣∣∣∣ ≥ ε, |rk ∩ rl|
min(|rk|, |rl|)

≤ δ, ∀k 6= l (1)

where |rk| denotes the area (Lebesgue measure) of the
rectangle rk. These two properties state that a “good” rect-
angle covering must span at least a portion ε of the region of
interest Ω while the intersection area between all two pairs
of rectangles is smaller than a portion δ of the smaller rect-
angle. While we can learn the parameter ε using the cover-
age statistics of the training data, we set δ = 0.1 in order
to accept a selection of rectangles if each pair of rectangles
does not overlap by more than 10%. Ideally, we would like
to set δ = 0. However, this might conflict with the some-
times noisy rectangle detection.
Calculation of the maximal (minimal) covering. Infer-
ring the true number of parts can be challenging for fur-
niture items with ambiguous rectangle structures. Because
we will try to find an optimal selection of parts in the second
step of the pipeline (Section 4), an estimate of the number of
parts helps to restrict the size of the search space. In order
to obtain these covering numbers, we successively try to fit
a rectangle covering for a fixed number K of IE candidates.

This can be achieved by solving quadratic integer pro-
grams for different values of K. Let r1, ..., rN be the IE
candidates. We set up two matrices A,O ∈ RN×N for the
two defining properties of an (ε, δ)-rectangle cover. Set

An,m =
1

|Ω|
|rn ∩ rm|, (2)

On,m = I
[
|rn ∩ rm|

min{|rn|, |rm|}
> δ

]
, (3)

for 1 ≤ n,m ≤ N , where I is the indicator function that is
1 if the argument is true and 0 otherwise. Furthermore, let
q ∈ RN with qn = |rn|/|Ω| for 1 ≤ n ≤ N . If for a fixed
K ∈ N, the optimal objective of the following quadratic
integer program is not less than ε, then the optimal value x∗

of the selector variables, defines an (ε, δ)-rectangle cover of
size K:

max
x∈{0,1}N

qTx− 1

2
xTAx− 2xTOx (4)

subject to
N∑
n=1

xn = K

We optimize this program using the Gurobi software [13].
Using the rectangle covering for pruning. We finally use
the maximum (ε, δ)-rectangle covering to reduce the set of
IE candidate rectangles. This pruning procedure is based
on the intuition that the semantic segmentation should cor-
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Figure 3: The images (b) and (d) show the distributions of
gradients within the marked rectangles in the images (a)
and (c) respectively. The door handles are clearly visible
as small regions with large gradients.

respond to a maximal covering (i.e., a rectangle covering
with the largest possible number of rectangles). While this
is not always the case, rectangles that are similar in size
and location to the ones from a maximal covering usually
form good proposals for interaction elements. Therefore,
we prune the initial set of IE candidates of all the rectan-
gles that are dissimilar to the ones in a computed maxi-
mal covering. To be specific, if r1, ..., rN are the initial IE
candidates and rn1

, ..., rnK
form a maximal (ε, δ)-rectangle

covering, then we prune the rectangle rn from the set if

maxk=1,...,K
|rn ∩ rnk

|
|rn ∪ rnk

|
< θ where θ ∈ [0, 1] is the prun-

ing threshold.

3.3. IE Candidate Weighting
We assign each IE candidate a weight and a class label.

The weight quantifies the likelihood of an IE candidate be-
longing to a certain class. We model the weights in terms of
the conditional probability

p(l | r, I) ∝ p(I | r, l)︸ ︷︷ ︸
Appearance
likelihood

p(r | l)︸ ︷︷ ︸
Shape
prior

p(l)︸︷︷︸
Label
prior

, (5)

where I is the image, r is a rectangle, and l ∈
{door, drawer, shelf} is a class label. The shape and label
priors can easily be modeled using standard machine learn-
ing techniques. For the shape prior, we extract the width
and height of the rectangle relative to the size of the region
of interest as well as its aspect ratio and then use kernel
density estimation with a Gaussian kernel. Modeling the
appearance likelihood, however, is more challenging.

Many traditional appearance-based classification meth-
ods make use of strong visual cues such as color and/or

texture. However, due to the mostly uniform appearance
of furniture items, those features often are not sufficiently
discriminative. Instead, we build our appearance likelihood
based on the observation that interaction elements of a cer-
tain class tend to exhibit particular traits such as handles at
distinct positions (e.g., many drawers have a handle at the
center). These traits are visible in a gradient magnitude im-
age as regions with strong gradients (Figure 3).

We design the appearance likelihood in terms of a code-
book of such traits. For this, we resize the appearance of
an interaction element in the gradient magnitude image to
a uniform size of M ×M pixels and use this as a feature
vector of dimensionality M2. Let vr,I ∈ RM2

be the fea-
ture vector for the rectangle r in the image I . The idea is to
represent vr,I in terms of a linear combination of codebook
vectors called codewords. We learn one codebook per class.
Given the codewords p(1,l), ..., p(J,l) ∈ RM2

for class l, we
express the appearance likelihood as

p(I | r, l) ∝ max
π∈[0,1]J
‖π‖1≤1

exp

−
∥∥∥∥∥∥vr,I −

J∑
j=1

πjp
(j,l)

∥∥∥∥∥∥
2

2

 .

(6)
Hence, the likelihood is large if there exist coefficients π
such that the feature vector vr,I can be approximated well
(in the l2-norm) by the linear combination

∑J
j=1 πjp

(j,l).
In order to evaluate this expression, the optimal coefficients
have to be determined. Taking the negative logarithm yields
the quadratic program

min
π

∥∥∥∥∥∥vr,I −
J∑
j=1

πjp
(j,l)

∥∥∥∥∥∥
2

2

(7)

subject to πj ≥ 0, j = 1, ..., J

J∑
j=1

πj ≤ 1

whose solution is the optimal coefficient vector.

Codebook learning. Let v(1), ..., v(Nl) be the feature vec-
tors corresponding to the groundtruth rectangles of class l.
We learn the codebook for each class independently by ex-
ecuting the following algorithm.

1. Initialize the codewords by assigning p(1,l), ..., p(J,l)

randomly to some feature vectors
2. While the decrease in the objective function (8) is sig-

nificant
(a) For each n ∈ {1, ..., N} determine π(n) by solv-

ing the quadratic program (7) with vr,I ≡ v(n).
(b) Update the codewords by solving the quadratic



program

min
p(1,l),...,p(J,l)

N∑
n=1

∥∥∥∥∥∥v(n) −
J∑
j=1

π
(n)
j p(j,l)

∥∥∥∥∥∥
2

2

(8)

subject to p(j,l)m ≥ 0, j ∈ [J ],m ∈ [M ]

where [J ] = {1, ..., J} and [M ] = {1, ...,M}.
The iteration over step 2 is required due to the al-

ternating optimization of π(n) and p(1,l), ..., p(J,l). This
concept of learning a codebook is closely related to the
field of sparse coding where one usually minimizes an l1-
regularized squared loss. Because our feature vectors are
discrete probability distributions, we included additional
constraints to reflect this setup. While intuition might sug-
gest that constraining the problem to guarantee that the
learned codewords form probability distribution themselves
should be the best design choice, the opposite is the case.
We want the codewords to reflect class specific visual traits.
However, usually only a fraction of the entire probability
mass is concentrated on these traits. Thus, they do not form
probability distributions themselves. Therefore, we only
constrain the codewords to be non-negative.

4. Proposal Selection by Energy Minimization
In the second step of the system, we compute the seman-

tic segmentation by selecting the most modular subset of
proposals. To this end, we define an energy function that
scores the modularity of a selection of IE proposals by the
number of forced merges in the modularity tree that we in-
troduce in the next section. We minimize the energy func-
tion using an MCMC-based optimization technique called
simulated annealing [5, 18, 3].

4.1. Modularity Tree
In order to score the modularity of a fixed selection of

IE proposals, we build a modularity tree. The modularity
tree inductively finds and merges constellations of similarly
sized rectangles in a bottom-up fashion. Each node in the
tree is labeled with a rectangle that tightly encloses the rect-
angles of its child nodes and a flag that indicates whether or
not the node is a result of a forced merge. A forced merge
always occurs if there are no two similar rectangles that can
be merged, see Figure 4. Algorithm 1 shows the main loop
of the tree building algorithm.

The tree is initialized using all rectangles as leaf nodes
(INITIALIZETREE). Each iteration of the while loop adds a
new layer to the modularity tree.

The FINDCLUSTERS function. It takes as argument a
set of rectangles and returns a set of clusters. The clusters
are found by maximizing the number of rectangles that are
contained in clusters and minimizing the total number of
clusters. From this objective it follows that some rectangles
might not be merged in an iteration. These rectangles will

l3

l2

l1

Figure 4: The modularity tree for the ground truth segmen-
tation of the cabinet shown in figure 1 (d). There is a forced
merge from level l2 to level l3 of the tree.

Algorithm 1 Build the modularity tree T from a selection
of non-intersecting rectangles. Here, d(r, p) is the merge
distance between the rectangles r and p. If the union rect-
angle of r and p does not intersect with any other rectangle,
then d(r, p) is the sum of the width and height differences.
Otherwise, it is infinity.

function BUILDMODULARITYTREE(r1, ..., rK)
T ← INITIALIZETREE(r1, ..., rK)
N ← {r1, ..., rK}
while |N | > 1 do
C ← FINDCLUSTERS(N )
f ← false
if |C| = 0 then

(r, p)← arg minr,p∈N,r 6=p d(r, p)
if d(r, p) =∞ then

return Error
C ← {{r, p}}
f ← true

for C ∈ C do
N ← N\C
m← GETUNIONRECTANGLE(C)
T ← ADDPARENTNODE(T , C,m, f )
N ← N ∪ {m}

return T

not be added to C. In the concrete example of Figure 4 the
first iteration (level l1) will only contain the red and the blue
cluster.

FINDCLUSTERS first exhaustively lists all valid clusters
and then selects the best subset of non-intersecting (set in-
tersection) clusters. A cluster C = {r1, ..., rL} is valid if

1. the contained rectangles are of approximately the same
size, and

2. the union (bounding) rectangle only significantly over-



laps with the elements of the cluster.
As a consequence, the second requirement e.g. ensures that
two rectangles of the same size that are separated by a third
rectangle of a different size cannot form a valid cluster.
Runtime. While the theoretical runtime of the algorithm is
exponential in the number of rectangles, it is not a problem
in practice. This is due to the small number of rectangles
(Usually, K < 15) and a search strategy where we examine
the most promising clusters first in the exhaustive search.

4.2. Energy function
Our objective is to find the most modular (i.e., least num-

ber of forced merges) set of IE proposals that forms a rect-
angle cover. We can formalize this using a multi-objective
optimization approach. Let (r1, l1), ..., (rK , lK) be a set of
IE proposals. Then, the energy function is given by

E((r1, l1), ..., (rK , lK))

=λ1
∑
n∈T

I[f(n)]︸ ︷︷ ︸
Modularity

score

−
K∑
k=1

p(lk | I, rk)︸ ︷︷ ︸
Label
energy

+ λ2
∑
n∈T

∑
c1,c2∈child(n)
c1,c2leaf nodes

I[l(c1) 6= l(c2)]

︸ ︷︷ ︸
Label

smoothing

(9)

where f(n) indicates whether node n is the result of a
forced merge and l(ci) is the label that is assigned to the
rectangle corresponding to the leaf node ci. By choosing
λ1 sufficiently large, we can prioritize modularity. This re-
sults in the optimum being the most modular selection of
candidate rectangles with the best labels.

4.3. MCMC-based Optimization
We optimize the problem (9) using simulated annealing.

Simulated annealing is an MCMC-based stochastic opti-
mization method. It is particularly suitable for our prob-
lem because it works well for combinatorial optimization
problems with arbitrary energy functions. Simulated an-
nealing works by constructing a Markov Chain with a sta-
tionary distribution that concentrates all probability mass
on the global minima of E. The Markov Chain can be
understood as a random walk through the state space. If
P is the current state, then we sample a new state P̃ with
conditional probability p(P̃ | P ). If E(P̃ ) ≤ E(P ), then
we accept the new state and set P := P̃ . Otherwise we
only accept the new state with a probability proportional to
exp

(
−(E(P̃ )− E(P ))/tn

)
where n ∈ N is the current it-

eration and tn is a monotonically decreasing cooling sched-
ule with tn → 0. By slowly decreasing the temperature tn
over time, accepting a worse state becomes less likely. In
the limit tn → 0, we only accept globally optimal states.

Algorithm 2 The MCMC-based optimization algorithm for
selecting the best segmentation for a fixed K ∈ N. Param-
eters and notation: Tstart > Tend > 0 are the start and
end temperatures, respectively, α > 0 controls how quickly
the temperature decreases over time, and UA is the uniform
distribution over the set A.

function SELECTPROPOSALS((r1, l1), ..., (rN , lN ))
P ← ((r1, l1), ..., (rK , rK))
t← Tstart
while t > Tend do

// Decrease the temperature
t← αt
// Sample a state in the neighborhood
Sample k ∼ U{1,...,K}
Sample p ∼ U{(r1,l1),...,(rN ,lN )}

P̃ ← P
P̃ (k)← p
// Accept the state with a certain probability
Sample u ∼ U[0,1]
if exp

(
− 1
t (E(P̃ )− E(P ))

)
≥ u then

P ← P̃

For our application, we chose a geometric cooling schedule
of the form tn = αtn−1 with α ∈ (0, 1). Further informa-
tion about simulated annealing can be found in [3].

Let D = {r1, ..., rN} be the set of candidate rectangles.
For a fixed K ∈ N, the state space for our problem is given
by the set of all sets of proposals of size K. We sample a
new state P̃ from the neighborhood of a given state P by
uniformly sampling a proposal in P that we replace with a
uniformly sampled proposal in the state space. Hence, P
and P̃ only differ in a single proposal. In order to guarantee
that we only choose the optimal state among the possible
(ε, δ)-rectangle covers of size K, we add a penalty term to
the objective function that is large if two rectangles intersect
more than δ or less than a portion ε of the region of inter-
est is covered by rectangles. This procedure is motivated by
the use of barrier functions in interior point methods. Algo-
rithm 2 depicts the entire optimization procedure.

We run the optimization algorithm for each K ∈
{Kmin, ...,Kmax} where Kmin and Kmax are the sizes of
the minimal and maximal rectangle covering, respectively
(Section 3.2). As the final segmentation, we choose the se-
lection with the smallest number of forced merges. In the
case that the minimum number of forced merges is achieved
for more than one K ∈ {Kmin, ...,Kmax}, we choose
the segmentation with the largest number of interaction ele-
ments.

5. Evaluation
We evaluate our approach on a novel dataset of 140 im-

ages from the IKEA online furniture catalog [1] showing
cabinets for which we provide ground truth annotations. All



Edge detector Precision Recall
Random forest 65.6% 97.3%
Canny 56.2% 78.9%

Table 1: The table shows the pixel-wise classification ac-
curacy of the random forest-based edge detector and the
Canny edge detector.
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Figure 5: IE candidate generation results for varying accep-
tance thresholds. Note that we generate an over complete
set of rectangles. Therefore, a low precision is to be ex-
pected.
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Figure 6: The tightness of the obtained bound on the true
number of interaction elements.

reported results are averages obtained from a 5-fold cross-
validation. We count an interaction element as detected if
its intersection over union score (IoU score) with a selected
IE candidate is greater than 0.65.

5.1. IE Candidate Evaluation
In the first stage of our approach (Section 3) we generate

an over-complete set of IE proposals from rectangles de-
tected in a semantic edge map. The semantic edge map is
generated by a random forest (Section 3.1). We compare the
pixel-wise classification performance of the random forest-
based approach to the Canny edge detector. To this end, we

IE class Detection rate
Door 86.9%
Drawer 85.4%
Shelf 64.3%

Table 2: The table shows the percentage of interaction ele-
ments whose rectangles have correctly been identified dur-
ing the proposal selection stage.

Prediction
Door Drawer Shelf

Tr
ut

h Door 87.4% 3% 9.6%
Drawer 1.9% 91.1% 7%
Shelf 16.3% 32.7% 51%

Table 3: The confusion matrix for the labeling of the rect-
angles.

accumulate class votes for each pixel and then apply hys-
teresis thresholding on the votes image in order to obtain a
comparable edge map. Table 1 reports the classification ac-
curacy. We see that the random forest-based edge detector
finds more semantic edges (higher recall) while at the same
time producing less irrelevant edges (higher precision).

In order to further illustrate the performance contribu-
tions obtained from choosing the random forest-based ap-
proach over a standard edge detector, we investigate the
performance of the subsequent rectangle detector. The rect-
angle detector directly uses the semantic edge map in order
to find IE candidates. Figure 5 reports the rectangle de-
tector performance by varying rectangle acceptance thresh-
olds. Again, the random forest-based edge detector consis-
tently outperforms the Canny edge detector.

In the final stage of the IE candidate generation step, we
prune the initial detector output and obtain upper and lower
bounds on the possible number of interaction elements. A
significant increase in precision from 37.6% before pruning
to 73.9% after pruning while only reducing the recall from
93.7% before pruning to 88.0% after pruning indicates that
the pruning step removes a considerable number of irrel-
evant rectangles while keeping most of the relevant ones.
Furthermore, the obtained bounds on the number of parts
are correct for 95.2% of all images. Finally, Figure 6 shows
the average upper and lower bounds for furniture items hav-
ing different numbers of parts. We see the bounds enclose
the true number of parts tightly.

5.2. Proposal Selection Evaluation
In the second stage of the pipeline (Section 4), we se-

lect proposals by minimizing an energy function. We report
two interesting measurements to assess the performance of
this stage. First, in Table 2, we measure the accuracy of the
selected rectangles regardless of their predicted labels. The
results show that the correct number of rectangles have been



Figure 7: Some successfully segmented images. Doors are red, drawers are green, and shelves are yellow.

(a) (b) (c)

Figure 8: Failure cases. (a) The boundary of the two individual doors has not been found; (b) as selecting the two correct
interaction elements would result in a forced merge, the wrong rectangle has been selected; (c) the top most drawer is
misaligned. In this case, the strong wooden texture induces significant edges that led to the incorrect rectangle being detected.

detected in most test cases. Second, we measure the accu-
racy of the predicted labels for those interaction elements
whose rectangles have correctly been found. Table 3 shows
the label confusion matrix. Our overall accuracy is 84.6%.

While we obtain strong classification results for doors
and drawers, the classification accuracy of shelves is lower.
This is the result of several factors. First, shelves exhibit
considerably fewer visual cues than most doors and draw-
ers. Hence, they can easily be mistaken for drawers or doors
without handles. Second, shelves are similar in size and
aspect ratio to drawers. Therefore, the confusion between
shelves and drawers is higher than the confusion between
shelves and doors. Finally, the data set is imbalanced in
the sense that the number of shelves is significantly smaller
than the number of doors and drawers. This results in a
lower prior probability for shelves. Figures 7 and 8 show
some qualitative results and common failure cases.

6. Conclusion
In this paper, we have proposed a method for the seman-

tic segmentation of modular furniture. In two stages, we
first generate an over-complete set of proposals and then
select a subset of proposals that minimize an energy func-
tion across multiple scales. We have demonstrated the per-
formance of our approach on a novel data set with ground
truth annotations which is publicly available2. This paper
marks a first step in the direction of detailed semantic seg-
mentation of indoor scenes. At this level of detail, semantic
segmentations open up new possibilities to robustly use au-
tonomous robots in indoor environments.
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