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Abstract We address the problem of vision-based nav-

igation in busy inner-city locations, using a stereo rig

mounted on a mobile platform. In this scenario seman-

tic information becomes important: rather than mod-

elling moving objects as arbitrary obstacles, they should

be categorised and tracked in order to predict their fu-

ture behaviour. To this end, we combine classical ge-

ometric world mapping with object category detection

and tracking. Object-category specific detectors serve

to find instances of the most important object classes

(in our case pedestrians and cars). Based on these detec-
tions, multi-object tracking recovers the objects’ trajec-
tories, thereby making it possible to predict their future
locations, and to employ dynamic path planning. The

approach is evaluated on challenging, realistic video se-

quences recorded at busy inner-city locations.

Keywords object category detection · tracking ·

dynamic path planning

1 Introduction

Autonomous navigation of robots and cars requires ap-

propriate models of their static and dynamic environ-

ment. Remarkable progress has been made in highway

traffic situations (Betke et al, 2000) and other largely

pedestrian-free scenarios such as the DARPA Urban
Challenge (DARPA, 2008). In contrast, environments
with a large number of moving agents—in particular
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ESAT/PSI–VISICS IBBT, K. U. Leuven, Belgium
E-mail: vangool@vision.ee.ethz.ch

Fig. 1 (left) Navigation in busy urban scenarios requires cate-

gory knowledge and object tracking, in order to reliably predict
future scene states. (right) Overhead view of the scene on the
left with detected obstacles (black), tracked persons (coloured
boxes with predicted motion cones), and blocked/occluded re-
gions (blue/red shaded areas).

inner-city locations with many pedestrians—still pose

significant challenges, and autonomous navigation in

such circumstances is a largely unsolved problem. One

of the main challenges in highly dynamic environments

is to predict future states required for decision-making

and path planning. We argue that in order to success-

fully navigate in such scenarios, an environment model

needs to include object semantics (e.g . whether a mov-

ing object is a pedestrian or a car), in order to correctly

estimate the objects’ motion paths and future locations.

Digital cameras, and in particular binocular stereo

rigs, at the moment do not reach the geometric accuracy

of range sensors such as LIDAR, but offer the advantage

that in addition to the scene geometry they deliver rich

appearance information, which is more amenable to se-

mantic interpretation. Recent work has shown that with

modern computer vision tools, visual environment mod-

elling for robot navigation is becoming possible (Ess

et al, 2009a; Wojek and Schiele, 2008). A key compo-

nent of these approaches is that they strongly rely on

semantic object category detection—in the context of

road traffic especially detection and tracking of pedes-

trians and cars.

To support dynamic path planning, it is not suffi-

cient to detect those scene objects; one also has to track

them (i.e. estimate their trajectories over time) to be

able to predict their future locations. The two tasks of

detection and tracking are closely related: several of the
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most successful tracking methods at present follow the

tracking-by-detection paradigm, in which the output of
(appearance-based) object detectors serves as observa-

tion for tracking. The task of multi-object tracking then

amounts to linking the right detections across time to

form object trajectories. The approach presented here

extends the tracking-by-detection framework to better

cope with difficult scenarios with many moving objects
close to each other.

The presented system uses only synchronised video

from a forward-looking stereo camera pair as input.
Based on the video data, the system continuously per-

forms self-localisation, obstacle detection, and object

category recognition. The focus of this paper is object

tracking and path prediction based on the per-frame

output of pedestrian and car detectors. The system

delivers all the required input for free-space computa-

tion and path planning with dynamic obstacles—see

Fig. 1(right).

Key components of our approach are the use of
state-of-the-art object class detection to find objects

of a given category and of a multi-hypothesis tracker to
handle data association in crowded scenes. An impor-
tant advantage of knowing the object category (seman-
tics) is that one can resort to category-specific, physi-

cally meaningful dynamic models for tracking and pre-

diction.

Our focus on purely visual navigation does not pre-

clude the use of other sensors such as LIDAR, GPS/INS,

and conventional odometry—in modern robotic systems

these sensors have a well-deserved place. Integrating
more accurate location and/or geometry could certainly
further improve performance of the described system.

The paper is structured as follows: in Sec. 2, we re-

view related work. We then go on to describe the system
context in which the tracker is embedded (Sec. 3). In

Sec. 4 follows a detailed description of the object track-
ing method, which is the focus of this paper. Section 5
presents experimental results on five different video se-

quences, and Sec.6 concludes the paper with a summary

and outlook. Parts of the presented work have appeared

in the preliminary papers (Ess et al, 2009a,c).

2 Related Work

Tracking as a classical data association problem has

been investigated for a long time. Several seminal works

originate from the problem of radar tracking (More-

field, 1977; Reid, 1979; Fortmann et al, 1983). These

basic works—which are are still in heavy use—already

identified the basic ingredients of a tracking system,

namely a dynamic (or transition) model describing the

objects’ motion patterns, an observation (or measure-

ment) model relating the object state to the observed
data, and an optimisation algorithm to infer the most
likely state from the model. A main advantage of vi-

sion as opposed to radar point tracking is the rich ap-

pearance information, which can simplify data asso-

ciation in case of close-range targets. On the down-

side, the observations are often very noisy due to oc-

clusions, lighting conditions, etc. Also, practical robotic

setups are monocular or binocular with small baseline,

which makes localisation in 3D relatively inaccurate.

In the following, we will review different tracking ap-

proaches under the aspects of the employed dynamic

model, observation model, and optimisation strategy.

A special focus will be on recent tracking-by-detection

approaches, which are most similar to the proposed ap-

proach.

2.1 Dynamic Model

Although the dynamic model plays a central role in

visual tracking, only few models are in common use.

In general, one can distinguish between models operat-

ing in physically meaningful 3D world coordinates, and

models operating directly in the image plane. In the
case of tracking in 3D, e.g . based on a known ground

plane calibration or stereo depth, a constant-velocity
model in physical coordinates is the standard choice

(Ess et al, 2008; Gavrila and Munder, 2007). When

tracking in the image plane, 3D position is often re-

placed by 2D image position and object scale (Okuma

et al, 2004; Wu and Nevatia, 2007; Zhang et al, 2008),
but the dynamic models usually remain of first order.
Few authors investigated higher-order models for er-
ratic motions, e.g . in sports (Okuma et al, 2004), or for

interacting targets (Khan et al, 2005). A recent develop-
ment is to learn image flow fields as dynamic models for
densely crowded scenarios (Ali and Shah, 2008). This

method does not generalise easily to different scenar-
ios, particularly not to moving cameras, where the flow
field constantly changes.

Here we will track in 3D world coordinates with

simple physical motion models, namely the constant-
velocity model for pedestrians, respectively the Ack-
ermann model (e.g . Cameron and Proberdt, 1994) for

cars.

2.2 Observation Model

The observation model has evolved considerably over
the years. Many early approaches depend on background

subtraction (Stauffer and Grimson, 1999; Toyama et al,
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1999) followed by blob detection to generate observa-

tions. This allows for simple, but general tracking (Is-

ard and MacCormick, 2001; Berclaz et al, 2006; Lanz,

2006), and can be extended to more intricate shape

models, e.g . (Zhao et al, 2008). A major limitation of

background subtraction is the need for a static camera.
This constraint is relaxed by using image information

such as edges (Isard and Blake, 1998) or local regions
(Bibby and Reid, 2008) as observations. However, such
low-level structures are susceptible to image clutter. To

be more robust to clutter, some researchers have pro-

posed to learn a discriminative model from the low-

level features (e.g . Avidan, 2005; Grabner and Bischof,
2006).

In recent years, appearance-based object category

detection has made great progress, c.f . benchmarks such

as (Dollar et al, 2009; Everingham et al, 2008; Enzweiler

and Gavrila, 2009). As a consequence, using the out-

put of an object detector as observation has become

increasingly popular (e.g . Okuma et al, 2004; Avidan,

2005; Gavrila and Munder, 2007; Wu and Nevatia, 2007;

Zhang et al, 2008; Leibe et al, 2008b). Most trackers

operate on the post-processed bounding boxes deliv-

ered as a final output of the detector, although some

(Leibe et al, 2007b; Ess et al, 2008; Breitenstein et al,

2009) employ a deeper coupling, directly using the (dis-

crete) distribution of detection probabilities. In our ex-

periments, we rely on a popular state-of-the-art object
detector (Dalal and Triggs, 2005), but improve its re-
liability by introducing additional scene context (c.f .

Sec 3).

In order to have a richer description of the detected

object region, the observation is often augmented with
local image statistics, mostly colour histograms (e.g .

Nummiaro et al, 2003; Okuma et al, 2004; Wu and
Nevatia, 2007). In recent work, histograms are some-
times replaced by discriminative models of the local
texture, which are learnt online. These models are suc-

cessful in situations where similar objects are close by,

especially when trained to discriminate a certain ob-

ject from all others in the scene (Breitenstein et al,

2009; Song et al, 2008). We found a colour histogram
in HSV space to be sufficient for our application, even
when simultaneously tracking around 15 people in a

busy scenario.

2.3 Optimisation Algorithm

The last required component is an optimisation algo-

rithm, in order to infer the most likely solution under

the dynamic and observation models. Many trackers

follow the first-order Markov assumption. Under this

assumption, the state posterior can be estimated only

from the state in the previous frame and the new ob-

servation by means of either a (Extended) Kalman fil-
ter (Gelb, 1996), Mean-Shift tracking (Comaniciu et al,
2003), the Joint Probabilistic Data Association Filter

(JPDAF) (Fortmann et al, 1983), a particle filter (Is-

ard and Blake, 1998), or combinations thereof (Schulz

et al, 2001).

These methods however quickly reach their limits as

the number of tracked targets increases. To prevent the

ensuing combinatorial explosion of the state space, the

mentioned filters are typically applied independently to

each target and only interact during the data associa-

tion stage. This interaction mostly amounts to opti-

mising the data assignment per-frame using, e.g ., the

Hungarian method (Munkres, 1957). Since the state in-

formation from all frames but the last one has been dis-

carded (the 1st-order Markov assumption), a very pow-

erful observation model is required to reduce the risk of

drifting away from the targets, or at least drifting be-

tween targets (switching identities) in busy scenarios.

Drifting can be reduced by optimising data assign-

ment over several time steps. In Multi-Hypothesis Track-

ing (MHT) (Reid, 1979; Cox, 1993), the k-best assign-

ment algorithm (Murty, 1968) is used in each step to

generate the k-best data associations, thus creating a

tree of hypotheses, each corresponding to one possible

state of the entire scene. This method is quite popular

in robotics (Arras et al, 2003). Without careful (heuris-

tic) pruning, MHT quickly becomes prohibitive: for four

observed targets and a tree depth of N =10 (easily re-

quired to track through short occlusions), 410 ≈ 106

state hypotheses have to be handled. Furthermore, by

operating only on the data assignment, physical exclu-

sion is not modelled explicitly (although it is to some

degree handled implicitly, e.g ., by non-maximum sup-

pression of detections in the image plane). Exclusion in

the absence of observations is not model-ed, and the

tracker can place two objects at the same location. We
will refer to such a physically impossible result as a
space-time violation.

The combinatorial explosion can be limited by link-

ing detections to “tracklets” where the data association
is unambiguous, and optimising data association over

those tracklets (Kaucic et al, 2005; Yan et al, 2006; Nil-

lius et al, 2006; Perera et al, 2006; Li et al, 2009). This

often gives good results in offline applications, but is

not well-suited for online tracking, because in the pres-

ence of complex interactions, tracklet generation is only

possible in hindsight.

Instead of limiting the state space of associations,

Berclaz et al (2006) suggest to discretise the object state

(location) to a grid. In this case, the global optimum for

a single trajectory can be calculated using the Viterbi
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algorithm (Viterbi, 1967). The extension to multiple

targets is done in a greedy fashion, iteratively running

the algorithm and removing the most probable candi-

date, which turns out to be a heuristic for the exact

algorithm defined in Wolf et al (1989). For mobile appli-

cations, defining a grid is difficult and the discretisation

can cause aliasing problems during path prediction.

Recently, some authors have suggested the use of

Markov chain Monte Carlo (MCMC) sampling to find

the (approximate) optimum in the joint tracking space
(Khan et al, 2005; Yu et al, 2007; Zhao et al, 2008). This
method generates a sequence of states at a given time

step, which collectively approximate the target distri-

bution. It can be seen as a stochastic version of the

hypothesise-and-verify strategy employed in the present

work.

Jiang et al (2007) propose the use of Integer Linear

Programming (ILP, Schrijver, 1998) to find a globally

consistent solution, accounting for exclusion and occlu-

sion between objects. This method can be employed

online, but is susceptible to changes of the observed
bounding box, and needs to know the number of ob-
jects in the scene a priori.

An elegant graph-theoretic solution to the data as-

sociation problem was proposed in (Zhang et al, 2008).

Each detection is represented by two nodes in a graph,

and edges are used to model transition, enter, and exit

probabilities, respectively. The globally optimal assign-

ment of detections to trajectories is then obtained by

repeatedly running a min-flow algorithm with differ-

ent flows, where the flows intuitively correspond to the

number of people in the scene. Explicit occlusion rea-

soning is possible in a second step, by adding virtual oc-

cluded detections to the graph. As above, space-time vi-

olations are only handled implicitly, and for each miss-

ing detection extra edges need to be added to the graph,

which can become prohibitive in the case of prolonged

misses. The method is more suited for offline applica-

tion, since it does not per se generate an output for

objects not observed in the current frame.

Morefield (1977) was probably the first to suggest

tracking by means of a two-stage hypothesise-and-verify

procedure. An over-complete set of trajectory candi-

dates is generated from the entire batch of measure-

ments over all time steps. ILP is then employed to find

a consistent subset, under the constraint that each data

point (i.e. detection) is used only once.

Independently, Leibe et al (2007a) introduced a track-

ing framework in which a redundant set of candidate

trajectories is generated online in each time step and is

pruned to a consistent subset using statistical model se-

lection. To account for missing measurements, interac-

tions are not only modelled by penalising the repeated

use of the same detection, but also the simultaneous oc-

cupation of space-time volume. The present work builds
on this framework, with a focus on trajectory estima-
tion and prediction for autonomous outdoor navigation.

3 Background

3.1 Object Category Detection

Appearance-based object detection forms the backbone

of our approach. In this paper, we focus on the two most

relevant object categories for street scenes: pedestrians

and cars. Detection delivers two important pieces of

information, namely where in the image an object of

interest is located, and what type of object it is. The

former serves to establish the objects’ positions in the

world, which in a dynamic setting are an important part

of the geometric environment model. The latter pro-

vides semantic information that supports higher-level

reasoning—most importantly for choosing the right mo-

tion model for the object, and for taking navigation de-

cisions which depend on the object category (e.g . the

safe distance to pass a pedestrian may be different from

the one to pass a car).
In more detail, the required detector output for fur-

ther probabilistic treatment is a set of potential ob-

ject detections, each consisting of an image position,

scale, object category label, and a detection probabil-

ity p(oi|I). In the present work we employ the popular

HOG framework (Dalal and Triggs, 2005). In a nut-

shell, this method uses a binary support vector machine

(SVM) to classify an image region as object or non-

object. As input features, it extracts a robust gradient-
based encoding of the image structure, the “Histogram
of Oriented Gradients” (hence the name HOG). The
classifier is evaluated densely at each image position

and over a multi-scale pyramid. The output is then con-

verted to a large set of potential detections by extract-

ing all local maxima of the detection probability which

exceed a low threshold. Their SVM scores can easily be
transformed to yield the desired detection probabilities.

For our application the simple combination of a global

region descriptor and a linear classifier consistently out-
performs other popular detection frameworks such as
the implicit shape model (Leibe et al, 2008a) and a de-
formable part-based model (Felzenszwalb et al, 2008)—

a detailed comparison is given in (Ess et al, 2009b).
The reason seems to be that pedestrians walking on the
street, respectively cars, exhibit relatively small shape

variations, so that the additional flexibility of such mod-

els is outweighed by their lower discriminative power.

For pedestrians, a single detector proved to be suf-

ficient, whereas seven separate detectors were trained
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for different views of cars, (three for front-profile, side,

and back-profile views, each in two mirrored version for
the left and right side, and one for back views). In our

approach the desired output of the classifier is a prob-

ability that a given object class is present at a certain

location, which then serves as input for the subsequent

hypothesis generation and selection. Since that step ex-

plicitly enforces physical exclusion and resolves cases
where multiple objects would occur at the same spatial
location, we opt to run independent binary classifiers

for each category and viewpoint. Postponing the com-

petition between different objects to a later stage allows

one to resolve it in 3D space, and also circumvents the

problems associated with multi-class classification such

as calibrating the margins returned by different classi-

fiers, and comparing image windows of varying aspect

ratio.

3.2 World Coordinate System

To allow reasoning about object trajectories in 3D co-

ordinates, the camera position in the world coordinate

system is estimated at each frame (“visual odometry”,

Nistér et al, 2004). Compared to standard visual odom-

etry, our system includes scene knowledge obtained from
the tracker to mask out image regions which do not
show the static background. Furthermore, our system

explicitly detects failures by comparing the estimated

position to a Kalman filter prediction. In the event

of failure, the visual odometry is re-initialised to yield

collision-free navigation (at the cost of possible global

drift). For details, we refer to (Ess et al, 2009b).

3.3 Ground Plane Estimation

Instead of directly using the output of a pedestrian

detector for the tracking stage, we introduce a simple

scene model: all objects of interest are assumed to re-

side on a common ground plane. This ground plane

is not fixed, but varies smoothly, so as to allow for

hilly terrain as well as camera tilt (e.g . due to accel-

eration/deceleration of the robotic platform).

The ground plane and the set of detected pedes-
trians are jointly estimated in a Bayesian network, us-

ing as input detection probabilities from the object de-
tection stage and stereo depth, as well as priors on
object size and a temporal smoothness prior on the

ground plane. Joint estimation has the advantage that

evidence is propagated in both directions: for largely

empty scenes the ground plane can be reliably esti-

mated from depth measurements and significantly con-

strains object detection; in crowded scenes less ground

is visible, but a large number of detected objects may

in turn constrain the ground plane.

Compared to the object detector alone, the combi-

nation with the ground plane model, stereo depth, and

object size priors greatly reduces the number of false

positives. For details, see (Ess et al, 2007).

3.4 Static Obstacles

For obstacles other than the detected object categories

pedestrian and car, in particular static street furniture,

additionally we construct a stochastic occupancy map

with the method of (Badino et al, 2007): depth maps are

projected onto a polar grid on the ground and are inte-

grated over time to yield an obstacle map. In contrast

to the original method, we filter out the tracked scene

objects. This is done for two reasons. Firstly, integrat-

ing moving objects results in smeared occupancy maps.

Secondly, we are interested not so much in the current

positions of the pedestrians and cars as in their future

locations. These can be predicted more accurately with

a specific motion model inferred from the tracker.

4 Tracking

Given the information described in the previous sec-

tion, tracking amounts to fitting a set of trajectories
to the potentially detected objects in 3D world coordi-
nates, such that these trajectories together have a high
posterior probability, i.e., they explain the observed ev-

idence well. Unlike traditional Markovian trackers, our
approach applies a hypothesise-and-verify strategy in
order to find the set of trajectories that best explains

the evidence from past and present frames. The hypoth-

esise step samples a large, over-complete set of can-

didate trajectories, and the verify step prunes it to a

minimal consistent subset.

The basic units of a tracker in the hypothesise-and-

verify framework are hypotheses (candidates) for possi-

ble object trajectories. Such a trajectory hypothesis is

defined as Hj = [Sj ,Mj ,Aj ], where Sj denotes its sup-

porting detections, Mj its dynamic model, and Aj its

appearance model. The set of all candidate hypotheses

at time t is denoted Ht
cand. This set can be (and usu-

ally will be) redundant, with many spurious hypotheses.

The verification stage then selects the optimal subset of

trajectories Ht
sel.

The basis for tracking-by-detection are the detec-

tions oti

i =[xi, Ci, ti, ai], with xi the object’s 2D position

on the ground plane, ti the time-stamp (frame index),

Ci the covariance matrix capturing the positional uncer-

tainty, and ai the appearance. Based on the output of



6

object detection and ground plane estimation (Sec. 3)

in a frame ti, we denote by p(oti

i |I
ti) an object’s prob-

ability given the image evidence, i.e. its detection score

and the ground plane. For the sake of clarity we will

mostly omit the superscript ti in the following. The

detections are accumulated in a space-time volume O
that spans all previous frames up to the current one.

To keep the method computationally tractable, O in
practice only contains the last few hundred time steps,

with t0 the smallest time step still considered. The aim

of the tracking step is thus to fit smooth trajectories

Hj to the detected object locations [xi, ti]
⊤ in O.

4.1 Hypothesis generation

The set of candidate trajectories is generated by run-

ning bi-directional Extended Kalman Filters (EKFs)

starting from each detection within O (for computa-
tional efficiency, the candidates from previous frames

are cached and extended, and only those starting from

new detections are generated from scratch, see below).

Each filter generates a candidate trajectory which obeys

the physical motion constraints of a person or car, re-

spectively, and bridges short temporal gaps due to oc-

clusion or detection failure. Note that candidates do not

only originate from the accepted tracks of the last frame

(as in classical trackers built on a first-order Markov as-

sumption). In the following, we describe the hypothesis

generator in more detail.

4.1.1 Data Association

In order to reliably associate a trajectory hypothesis

with candidate detections, we employ for each hypoth-
esis Hj both a dynamic model Mj and an appearance

model Aj . Together, these can be used to evaluate an

observation oi under Hj ,

p(oi|Hj) = p(oi|Aj) · p(oi|Mj) . (1)

The probability p(oi|Hj) is used to score all observa-

tions of a time-step against a trajectory hypothesis. The

detection with the highest probability is then used for

updating the trajectory (“winner takes all”). To pre-

vent erroneous associations, p(oi|Hj) is gated so as to

include only feasible observations.

Dynamic Model. Following a standard approach, we

use an Extended Kalman Filter (Gelb, 1996) to describe

an object’s motion in a physically plausible way. In the

following, we briefly review the generic model, before

describing the actual motion models for our object cat-

egories.

An EKF is a recursive Bayesian filter (for a gen-

eral introduction, see e.g . Arulampalam et al, 2002;

Gelb, 1996) which iteratively repeats two steps at each

frame: it predicts the object state by applying the dy-

namic model M to the state posterior st−1 of the pre-

vious frame; and it updates the resulting state prior to

a state posterior st for the current frame by fusing it

with the new observation oi. The dynamic model M

gives rise to a function fM(·), which governs the state
transition p(st|st−1). Assuming a first-order model, the

a priori distribution of the next time step can be cal-

culated given measurements up to time t − 1 via the

Chapman-Kolmogorov equation,

p(st|Ot−1) =

∫
p(st|st−1) p(st−1|Ot−1) dst−1 , (2)

where Ot = {o1, . . . , ot} denotes the set of observations

up to time t. Taking a new measurement ot into ac-

count, the predicted distribution is updated according

to Bayes’ rule to arrive at the a posteriori distribution

p(st|Ot) =
p(ot|st) · p(st|Ot−1)

p(ot|Ot−1)
, (3)

Here p(ot|Ot−1) is a normalisation factor and p(ot|st)

is the observation likelihood (the likelihood that state

st generated measurement ot).

Due to the large state space for multi-dimensional
state vectors, the evaluation of the prior probability

for each point quickly becomes intractable. Our EKF
framework, an extension of linear Kalman filtering, as-
sumes a unimodal Gaussian distribution of the current
state. It is specified by defining the transition function

fM(·) and the measurement function fX (·) (for pedes-

trians the observed location, for cars the observed loca-
tion and heading direction), as well as their respective

Jacobians.

A more general recursive Bayesian filter, which caters
for multi-modality, is the particle filter (sequential Monte-

Carlo estimation). In our experiments using a particle

filter did not yield any improvement. It behaved similar

to the EKF, even when observations were missing (i.e.,

a radially growing uncertainty ellipse).

In the employed EKF framework, motion models

only differ in the choice of the state transition function

fM(·) and its noise vector. In the following, we will

introduce the models used for pedestrians and cars.

Pedestrians. For pedestrians, we assume a constant-

velocity model, i.e., the state space is defined as st =

[xt, yt, θt, vt]
⊤, with (xt, yt) the 2D position, θt the pedes-

trian’s orientation, and vt its speed, see Fig. 2 (a). The

latter two are initialised to 0, as a detection itself only
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(a) (b)

Fig. 2 (a) Constant-velocity model employed for pedestrians.
(b) Ackermann steering model used for describing a car’s non-

holonomic motion. ICR denotes the centre of rotation, tangential
to which the acceleration is measured.

indicates the position of the person. The corresponding
transition function is thus

fM(st−1, wt−1)=




xt−1 + vt−1 cos(θt−1)∆t

yt−1 + vt−1 sin(θt−1)∆t

θk−1

vt−1



+




0
0

wθ

wv



 . (4)

wθ and wv are the noise components for orientation and

velocity, respectively. Given the current state position

xs
t , the likelihood of an object oi with position xi under

the motion model is measured by:

p(oi|Mj) ∼ e−
1

2
(xi−x

s
t )⊤(Ct+Cxi

)−1(xi−x
s
t ) , (5)

This accounts for the uncertainty in the system Ct, as

well as for the localisation uncertainty of the detection
Cxi

, estimated from the stereo geometry by linear error

propagation. The latter is especially important to han-
dle far away objects correctly, as their localisation in
depth is highly inaccurate. Correct modelling of these
two terms proved to be of prime importance for good

tracking results across a large working range.

Cars. For cars, which move non-holonomically due to

mechanical constraints, we employ the Ackermann steer-
ing model (c.f . Cameron and Proberdt, 1994). This in-

cludes two so-called driving processes, the steering an-
gle φt and the tangential acceleration at, as shown in

Fig. 2(b). The state vector is st = [xt, yt, θt, vt, φt, at]
⊤,

giving rise to the update equation

fM(st−1, wt−1) =
0

B

B

B

B

B

B

@

xt−1 + vt−1 cos(θt−1)∆t + 1

2
at−1 cos(θt−1)∆t2

yt−1 + vt−1 sin(θt−1)∆t + 1

2
at−1 sin(θt−1)∆t2

θt−1 + 1

L
vt−1 tan(φt−1) · ∆t

vt−1 + at−1 · ∆t

φk−1

at−1

1

C

C

C

C

C

C

A

+

0

B

B

B

B

B

B

@

0
0
0
0

wφ

wa

1

C

C

C

C

C

C

A

.
(6)

L is the distance between the axles of the car and is

set to a default value of L = 3.2 m in our scenario. The

Fig. 3 Colour histograms are calculated inside an ellipse fitted
to the bounding box, weighted with a Gaussian.

process noise (wφ, wa) is only dependent on the two

driving processes.

Note that the EKF cannot account for any con-

straints on the steering angle. We nevertheless chose

this option for its simplicity and good performance.

Cars are detected with separate detectors for differ-

ent viewpoints, therefore the likelihood function is ex-

tended to also take into account the orientation θ̂i of

the detector:

p(oi|Mj) ∼ e−
1

2
(xi−x

s
t )⊤(Ct+Cxi

)−1(xi−x
s
t )−λ|n(θs

t )⊤n(bθi)| ,

(7)

where λ sets the influence of the orientation similarity

on the distance and n(θ) denotes the unit vector cor-
responding to the orientation θ. The employed motion

models are rather simple, but proved to be effective in

practice. In particular, we found that the positional ac-

curacy of the underlying detections is not sufficient to

support more complex motion models (e.g . incorporat-

ing acceleration).

Appearance Model. As a hypothesis Hj ’s appearance

(observation) model Aj , we choose an (8 × 8 × 8)-bin
colour histogram in HSV space. For each observation

oi, we compute its histogram ai over an ellipse fitted

inside the detected bounding box, applying a Gaussian

kernel to put more emphasis on pixels close to the cen-

tre. The resulting ellipses for pedestrians and cars are

shown in Fig. 3. For robustness against slight colour

aberrations, trilinear interpolation is used when build-

ing the histograms.

The similarity of an object and a hypothesis is then

defined by the Bhattacharyya distance between the his-

tograms,

p(oi|Aj) ∼
∑

q

√
ai(q)Aj(q) , (8)

with q a 3-dimensional index over the histogram bins.

When a new observation oi is added to a trajectory,
Aj is updated with an Infinite Impulse Response (IIR)

filter,

Aj(q) = wAj(q) + (1 − w)ai(q) . (9)
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The mixing factor w =1 − min
(
exp(|xi − xs

t |
2), γ

)
de-

pends on the closeness of the observation and the dy-

namic model, so as to reduce the influence of badly

localised detections which contain more pixels from the

background and fewer pixels from the object. To limit

the influence of a single observation and ensure smoothly

varying appearance, the mixing factor is also truncated

at γ = 0.9.

The appearance model is only used to rule out very

improbable associations, but is not propagated through

the Kalman filter, which would prohibitively inflate the

state vector. In combination with the dynamic model,

this captures enough information to allow reliable track-

ing among many interacting agents. Further improve-

ments could potentially be obtained by using a dis-

criminatively learnt model (Song et al, 2008), where an

object’s appearance is explicitly learnt against all the

others in an online fashion. Note that the discriminative

approach cannot be applied when trajectory hypotheses

are generated independently, as in (Leibe et al, 2008b).

Such an approach requires the knowledge of all tracked
objects (i.e. not candidates) at each time step, to com-

pare classifier confidences.

Efficiency Considerations. The space-time volume O

accumulates detection responses from the current and

past frames and serves as the basis for creating trajec-

tory hypotheses. The employed hypothesise-and-verify

architecture requires that the set of hypotheses passed

to the selection algorithm has to be over-complete, i.e.
the hypothesis generation stage has to generate at least

all correct hypotheses for the subsequent selection to

recover an object. However, to keep the method com-

putationally tractable, the candidate set should also be

as small as possible, as the general optimisation proce-

dure is NP-complete. Therefore, we generate hypothe-

ses drawing inspiration from two complementary ap-
proaches in the literature. On the one hand “trajec-
tory extension” is very similar to a standard Markovian

tracker, where in each step hypotheses compete for ev-

idence (e.g . Wu and Nevatia, 2007). We thus expect a

performance at least as good as a Markovian tracker.

On the other hand, we start searches backwards in time

to initialise hypotheses and generate possible additional

explanations, which can be interpreted as an instance

of the “observe-and-explain” approach (Ryoo and Ag-

garwal, 2008).

4.1.2 Trajectory Generation and Extension

Conceptually, trajectories can be initialised at each po-

tential detection in the volume O by applying the ap-

propriate motion model backwards and forwards in time.

This algorithm is visualised in Fig. 4 (a–c).

In typical scenes, this creates a candidate set with

many unnecessary duplicates started at different detec-

tions on the same track. To prevent these, the hypothe-

sis set can be constructed in an incremental fashion by

(1) extending hypotheses forward in time from the last

time step to the current one, and (2) starting indepen-

dent searches backwards in time from all detections of

the current time step. The latter ensures that trajecto-

ries for newly appearing objects are initialised, and that

for each actual object which has been successfully de-

tected in the current frame, at least one good trajectory

candidate is created, independent of earlier association

errors.

To maximise tracking performance, it is crucial to
find (among others) good candidates with correct data

association. This requires some care in handling ambi-

guities in the association process and occlusions.

Parallel Generation. Trajectory generation is performed

in parallel from all new detections (in contrast to (Leibe

et al, 2008b)). When generating candidate trajectories

independently of each other, they cannot compete for

measurements—the competition is left to the final se-
lection algorithm. In difficult crowded cases, candidates
will therefore include wrong measurements of other nearby

objects. To remedy this behaviour, we rely on the fact

that image-based non-maximum suppression only yields

at most one detection per object and camera, and that

the observations of the same object in two or more cam-

eras can easily be merged with a conservative clustering
step. Hence, only the most likely detection is used to
update the state (“winner-takes-all”), rather than using

all nearby detections weighted by the distance.

To sustain existing hypotheses already in the hy-

pothesis set, we extend them, similar to standard re-

cursive trackers. Again, the extension is carried out in

parallel such that trajectories compete for detections,

ensuring that each trajectory can be updated with at
most one observation. In case of conflicts, when an ob-
servation is the most likely match for two or more can-

didate trajectories, the observation is assigned to the

trajectory candidate with the highest likelihood, in a

greedy manner. Candidates which do not manage to

claim any detection during this process are merely ex-

tended through extrapolation.

The effect of the competitive hard assignment of de-
tections is twofold. Firstly, it avoids unwanted attrac-

tion between candidates and better separates closely

interacting pedestrians (when using soft assignment,

the same measurement can influence several nearby tra-

jectory candidates, pulling them closer together). Sec-

ondly, the set of candidates tends to be more compact,

because each measurement can only support a single
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Fig. 4 Illustration of the trajectory growing procedure. (a) Starting from an object detection at some point in time, detections in
neighbouring frames are found which can be reached within the constraints of the dynamic model. (b) The trajectory is adapted

based on the new observations, and the process is iterated both forwards and backwards in time. (c) This results in a set of candidate
trajectories, which are passed to the hypothesis selection stage. (d) For efficiency reasons, trajectories are grown incrementally.

candidate in a crowded region, making weak candidates
more prone to attrition.

Occlusion Reasoning. The limited height of most ve-

hicles enforces rather low camera placement, such that
pedestrians and/or cars are frequently occluded by each

other, or by other scene objects. We therefore opt to

explicitly model occlusion, rather than to treat it as

yet another case of missing detections. To this end,

we generate an occlusion map on the ground plane,

on the same discrete polar grid as the obstacle map
(c.f . Sec. 3). An example is shown in Fig. 1. The map

contains the regions occluded by both static obstacles

(occlusions computed directly from the obstacle map)

and moving objects (occlusions computed from object

positions extrapolated from the previous time step).

As long as a candidate trajectory remains in an
occluded region, it is kept alive and its state is ex-

trapolated. Here the uncertainty modelling property

of the EKF becomes important: prolonged extrapola-

tion without observations leads to progressively larger

location uncertainty and hence a larger search region

for supporting detections. This increases the chance of

finding the observation again once the object reappears.

The greedy assignment described in Section 4.1.2 mean-
while ensures that such a candidate does not steal de-

tections from less uncertain competitors. By modelling

occlusions, we obtain longer object tracks, which better

supports path planning.

4.2 Trajectory selection

The obtained candidate set Hcand is highly redundant,

and the candidate trajectories are not independent be-

cause of the twin constraints that two pedestrians can-

not occupy the same location on the ground plane at

the same time and that each object detection can only

belong to a single pedestrian trajectory.

The selection step employs model selection to dis-

card all redundant hypotheses and retain only a min-

imal, conflict-free set of trajectories required to ade-

quately explain past and present observations. This is
achieved by maximising the total support of the pruned
set Hsel as a function of the selected candidates. This

support should

– increase as the trajectories Hsel explain more de-

tections and as they better fit the detections’ 3D
location and 2D appearance through the individual

contribution of each detection;
– decrease when trajectories are (partially) based on

the same object detections, through pairwise correc-

tions to the trajectories’ joint support (these express

the constraints that each pedestrian can only follow

one trajectory and that two pedestrians cannot be

at the same location at the same time);

– decrease with the number of required trajectories

through a prior favouring explanations with fewer

trajectories—balancing the model complexity against

its goodness-of-fit in order to avoid over-fitting (“Oc-

cam’s razor”).

Fig. 5 visualises the generation and selection of can-
didate trajectories for an example scene. In this scene,

people are standing close together, which results in tra-
jectory hypotheses that contain detections from several
actual persons (note, e.g ., the long curve going to the

left). Selecting such a candidate is however suboptimal
from a global perspective, as the above-mentioned con-
straints would preclude the simultaneous selection of
other candidates that are based on the same persons.

Hence, it is better to select candidates that are mutu-
ally consistent with each other.

Note that starting from an exhaustive set of trajec-

tory candidates by definition enables automatic initial-
isation (usually after 2–3 detections) and the ability to

recover from temporary track loss and occlusion.
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(a) (b) (c) (d)

Fig. 5 Tracking by means of a hypothesise-and-test framework: given object detections from the current and past frames (a), we
construct an exhaustive, over-complete set of trajectory hypotheses (b) and prune it back to an optimal subset with model selection

(c), yielding the final trajectories (d).

To select the jointly optimal subset of trajectories,

we assign each trajectory Hj a support (utility) U ,
which is composed of the strength of its supporting de-

tections {oi}, weighted by their goodness-of-fit w.r.t.

the dynamic model M and the appearance model A.

U(Hj |I
t0:t) =

∑

i

U(oi|Hj , I
ti) =

=
∑

i

p(oi|I
ti) · p(oi|Aj) · p(oi|Mj) .

(10)

Choosing the best subset {Hj} is now a model se-

lection task. If we only take into account pairwise inter-

actions1 it translates to the quadratic binary problem

max
m

[D(m)] = max
m

[
m⊤Qm

]
, m ∈ {0, 1}N . (11)

Here m is an indicator vector (of length N), specifying

which candidates to use (mi = 1) and which to dis-

card (mi = 0). The diagonal elements qii contain the

individual likelihoods of candidate trajectory Hi, re-

duced by the “model penalty”, a prior which favours

solutions with few trajectories. The off-diagonal ele-

ments qij model the interaction between candidates i

and j and contain the correction for double-counting

detections consistent with both candidates, as well as a

penalty proportional to the overlap of the two trajec-

tories’ footprints on the ground plane:

qii = − ǫ1 +
∑

o
tk
k

∈Hi

(
(1−ǫ2)+ǫ2U(oti

i |Hj , I
ti)

)

qij = −
1

2
ǫ3O(Hi, Hj)−

−
1

2

∑

o
tk
k

∈Hi∩Hj

(
(1−ǫ2)+ǫ2U(oti

i |Hℓ, I
ti)

)
,

(12)

1 Disregarding higher-order interactions results in too high
penalties in cases where more than two trajectories compete
for the space and/or detections; if interaction penalties are high
enough to enforce complete exclusion, this will not alter the re-
sult.

where Hℓ ∈ {Hi, Hj} denotes the weaker of the two

trajectory hypotheses, whose evidence is subtracted to
avoid double counting; O(Hi, Hj) measures the physi-

cal overlap between the footprints of Hi and Hj given

average object dimensions; ǫ1 is the base cost for each

new trajectory, required to prevent over-fitting, and
should be chosen such that it suppresses trajectories
with less than ≈ 2 good detections, in order to weed

out erratic false detections; ǫ2 is a regularisation pa-
rameter, which ensures a minimal support for each ex-
plained object detection and compensates for model

inaccuracies—smaller ǫ2 puts less weight on the goodness-

of-fit in terms of appearance and dynamics, and more

weight on the fact that a detection could be associated

with the trajectory at all; ǫ3 is the influence weight of

the overlap penalty, and should be chosen large enough
to prevent selecting any two trajectories with significant
overlap.

4.2.1 Optimisation

The maximisation of Eq. (11) is NP-hard, but there are

several methods which find strong local maxima, e.g .

the multi-branch method of (Schindler et al, 2006), or

QBPO-I (Rother et al, 2007). The solution is a locally

optimal set of object candidates for the current frame:

most false detections are weeded out, since they usually
do not have a supporting trajectory in the past (this is
the main source of improvement), and missed detections

are filled in by extrapolating those trajectories which

have strong enough support in the previous frames.

In our approach, we use an extended version of the
multi-branch method of (Schindler et al, 2006). The al-

gorithm selects at every level the set of most promising

hypotheses and tries adding each one recursively. At

each level R, at most BR hypotheses are tested. An

important insight of Schindler et al (2006) is that the

function D is submodular (qii > 0, and qij ≤ 0 ∀i 6= j).

Due to this property, the path to the optimum never
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contains any descent steps. Formally, given a current

choice m′, the next step in the search m′′ must always
fulfil D(m′′) > D(m′). Otherwise, the search along this

path can be terminated.

Here, we employ an additional bound. Given a solu-
tion m′, let L′ be the set of indices of hypotheses which

are not in the current solution, {∀i ∈ L′ : m′
i = 0}.

Denote by 1i a vector that contains all 0s except at en-

try i. Starting from m′, the maximally reachable score

never exceeds

s = D(m′)+max
[
0,

∑

i∈L′

(D(m′ + 1i) −D(m′))
]

. (13)

That is, the maximal additional score is always bounded

by the sum of adding all positive hypotheses, account-

ing for their interaction with the current solution, but

ignoring their interactions among each other. Formally2,

D(m′+1i +1j)+D(m′) ≤ D(m′+1i)+D(m+1j). As

a consequence of this bound, the optimisation can quit

a branch of the search tree as soon as the maximally

reachable score is smaller than the current maximum

smax. This early stopping reduces the number of invo-
cations of the search recursion to 63% of the original

number. When operating on a video sequence, the so-
lution from the previous frame can be used to further
constrain the optimisation. To do so, we set smax =

D(m̂(t−1)) before starting the optimisation, where m̂(t−1)

are the trajectories deemed successful in the last time
step, evaluated under the current interaction matrix Q.
Doing so ensures that smax is always a reachable solu-

tion. Due to temporal consistency, this is usually a good
starting value for smax, reducing the number of invo-

cations by another 2% to 61% of the original number
(which is only a small improvement, but comes at no

extra cost).

Discussion. As the maximisation is performed on a per-
frame basis, there is no guarantee that the current ex-

planation is consistent with the one obtained in the pre-
vious frame. Still, when it is selected it not only explains
the current frame t, but also offers the most likely ex-

planation for the past, in the light of the entire evidence
up to time t. We can thus follow a trajectory back in

time to determine where a pedestrian or car came from

when it first entered the field of view, even if back then

no trajectory was selected for that particular object.

Empirically, the selection step typically keeps be-

tween 25% and 35% of the candidate trajectories. In ex-

treme cases, this figure extends to 8% and 100%, respec-

tively. The ratio depends on the momentary complexity

2 This follows directly from the definition of submodularity

(c.f . Boros and Hammer, 2002).

of the scene: pedestrians with similar appearance mov-

ing close to each other give rise to more candidates.

Such difficult situations are also the cases where greedy

maximisation of Eq. (11) fails. With the proposed opti-

misation method, we did not notice any problems due

to weak minima. The limiting factor seems to be model

inaccuracy, rather than optimisation failures.

4.3 Implementation Issues

In this section, we review some important details of
the practical implementation. Although these details
are mainly straight-forward engineering considerations,

we discuss them in some detail, in the hope that they

may be useful for other researchers.

Hypothesis Pruning. Continually extending the exist-

ing hypotheses and at the same time generating new

ones leads to an ever-growing hypothesis set, which

would quickly become intractable. A conservative prun-

ing procedure is used to control the number of hypothe-
ses to be evaluated: (1) hypotheses older than the time
window under observation (t0–t) are removed, (2) can-

didates which have been extrapolated through time for
too long without finding any new evidence are removed,
and (3) candidates which have been in the hypothe-

sis set for too long without having ever been selected

are discontinued (these are mostly weaker hypotheses,

which are always outmatched by others in the compe-

tition for space).

Importantly, the pruning step only removes hypothe-

ses which have been unsuccessful over a long period of

time. All other hypotheses, including those not selected

in recent frames, are still propagated and are thus given

a chance to find new support at a later point in time.

This allows the tracker to recover from failure and ret-
rospectively correct tracking errors.

4.3.1 Identity Management

While the hypothesis selection framework uses infor-

mation from a large time interval, the resulting expla-

nations are independent at each time step. Thus, ob-

ject identities are not automatically preserved. If this

is desired (e.g . for surveillance scenarios), an additional

process is needed to propagate identities.

In the case of a trajectory generated by extension of

a previously selected one, identity preservation is triv-

ial. If the selected trajectory Hj is not the extension

of a previously successful candidate, it is compared to

the “old” trajectories selected in past frames (which al-

ready have a unique identity). If an “old” trajectory is
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found, which is based largely on the same detections

Sk, then the new trajectory is assigned the identity of
the old one. If the new trajectory does not match any

of the known trajectories, a new ID is instantiated. As

a criterion for trajectory overlap we use

|Sj ∩ Sk|/ min(|Sj |, |Sk|) > ξ . (14)

By itself this may seem like a crude heuristic. However
in the context of the presented system, we can choose
a very conservative threshold ξ (say, 50%), because the

physical exclusion constraints during trajectory gener-

ation and selection ensure that any two trajectories se-

lected at time t have zero overlap (and hence only one
trajectory at any time t can significantly overlap a ref-

erence trajectory from a previous time step).

4.3.2 Trajectory Initialisation and Termination

Tracking is started automatically after a few frames as

soon as the benefit of a correct trajectory exceeds its

cost. The initialisation is not constrained to a specific

image region, since such “entry regions” cannot be de-
fined for general scenarios, even less so if the camera
is moving. Although several frames are required as ev-
idence for a new track (in our application 2–3, given

evidence from both cameras), the trajectory is in hind-

sight recovered from its beginning.

The flipside of automatic initialisation is that tra-

jectory termination must be handled explicitly. If an ob-

ject leaves the scene, the past detections along its track

still exist and may prompt unwanted re-initialisations.

To avoid this behaviour, exit zones are defined on the

ground plane along the image borders3 and are con-
stantly monitored. When a trajectory enters the exit

zone from inside the image, the corresponding object is

labelled as terminated, and its final trajectory is stored

in a list of terminated tracks. During hypothesis selec-

tion, these terminated tracks are always added to the

selection and prevent re-initialisations from the under-

lying detections through their interaction penalties.

5 Experimental Evaluation

We present experimental results on five different se-
quences recorded with three different platforms. In all

cases, the sensor was a pair of forward-looking AVT
Marlin F033C cameras, which deliver synchronised video
streams of resolution 640 × 480 pixels at 13–14 frames

per second. Bahnhofstrasse (999 frames) and Lin-

thescher (1208 frames) have been recorded with a

3 The exit zones are automatically shifted for a moving camera

setup such that they always correspond to the image borders.
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Fig. 6 Single-frame performance evaluation on Seq. Bahnhofs-

trasse. See text for details.

child stroller (baseline ≈ 0.4 m, sensor height ≈ 1 m,

aperture angle ≈ 65◦) in busy pedestrian zones, with
people and street furniture frequently obstructing large

portions of the field of view. Loewenplatz (800 frames),

Bellevue (1500 frames), and City (3000 frames) have

been recorded from a car (baseline ≈ 1 m, sensor height
≈ 1.3 m, aperture angle ≈ 50◦) driving on inner-city

streets among other cars, trucks and trams. Pedestrians

appear mostly on sidewalks and crossings, and are ob-

served only for short time spans. Lighting and contrast

are realistic, with most sequences recorded on cloudy

days in winter. Videos of tracking results are available

as multimedia extensions, see appendix.

For testing, all system parameters are kept the same
throughout all sequences, except for platform-specific

parameters, such as the camera calibration and height
and the ground plane prior (which depends on the wheel-
base and suspension of the platform).

5.1 Quantitative Results.

Per-frame evaluation. In Fig. 6 we evaluate single-frame

performance on Seq. Bahnhofstrasse, and compare

the described method with its predecessors, as well as
alternative approaches. In all cases, the bounding boxes
estimated with different thresholds are compared to

manually annotated ground truth by plotting recall over

false positives per image. A bounding box is counted as

correct if its intersection with the ground truth box is

> 50% of their union.

The HOG detector alone, without any scene knowl-

edge, already performs reasonably well (“raw detec-

tor”). Adding depth and ground-plane knowledge im-

proves performance by 5–10% (“detector”). Adding track-

ing further improves the reachable recall, but loses per-

formance in the high-precision regime (Ess et al, 2009a).

This is partly an effect of per-frame evaluation: the

tracker requires 2–3 detections to initialise a trajectory

(losing recall), and it does report people while they are
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Fig. 7 Single-frame performance comparison between per-frame object detection (including 3D scene information), and object track-
ing, for four different sequences.

occluded and hence not annotated (losing precision).

To compensate the latter effect, we also plot the de-

tection rates after removing pedestrians who are oc-

cluded according to the estimated 3D state (“tracker”).

The performance of the monocular system (Leibe et al,

2007b) using ISM and no depth information is very

poor, mainly because of the high number of false alarms

produced by the ISM pedestrian detector. Scene knowl-

edge cleans up many of the false alarms, hence our

previous ISM-based system with depth reasoning (Ess

et al, 2008) reaches 55% at 1 false positive per image
(FPPI). To assess the benefit of the multi-hypothesis
approach, we also reduce our system to a first-order

Markov tracker, by running only the extension step

without any model selection (on the HOG detections),

and initialising new trajectories from unassigned de-

tections. This emulation, reaches 63% recall, similar to

the raw detector, which shows the advantage of explicit
multi-frame space-time reasoning.

On the same sequence Zhang et al (2008) report

70% recall at 1 FPPI. While they do not use stereo

data, their approach is a batch process (requiring the

detections of the entire video sequence) and can thus

use future observations to correctly handle occlusions.

Our online system performs comparably with 73% re-
call at 1 FPPI. Also using stereo data, Bajracharya et al
(2009) report 58% recall on this sequence at 1 FPPI
(and 42% recall on Seq. Linthescher, see below).

In Fig. 7, we compare single-frame performance of
the tracker with the scene-filtered detector (with stereo
and ground-plane estimation, but without tracking) on
three further sequences. Again, tracking suffers from

the latency of trajectory initialisation (this effect is

more pronounced for Seq. Loewenplatz,which con-
tains many briefly visible pedestrians). However, only

the tracking stage can provide the necessary temporal

information for motion prediction and dynamic path

planning. The blue curves in Fig. 7 show the perfor-

mance on all annotated pedestrians. When only consid-

ering the near and mid range up to 10/30m distance

(depending on the platform and driving speed), perfor-

mance is considerably better, as indicated by the red

curves.

FPPI full depth range restricted to 15 m
Detector Tracker Detector Tracker

no depth 0.5 — 0.19 — 0.32
1.0 — 0.29 — 0.47

PS 0.5 0.63 0.60 0.66 0.66

1.0 0.68 0.70 0.67 0.74

BP 0.5 0.65 0.64 0.66 0.73

1.0 0.67 0.73 0.66 0.77

Zach 0.5 0.65 0.64 0.67 0.73

1.0 0.67 0.73 0.67 0.78

Table 1 Detection rates for Seq. Bahnhofstrasse with differ-
ent stereo matching methods. Better depth maps improve locali-

sation, and hence tracking, in the near field. Fast stereo methods

come at the expense of slightly worse performance. Since we use
robust statistics on depth, elaborate stereo algorithms bring little
improvement at the system level.

In Table 1, we also compare the effect of using dif-

ferent stereo-matching methods for depth estimation

(Sec. 3). This is of special interest, since nowadays a

plethora of stereo algorithms of varying quality and run-

time are available. Specifically, we compare fast GPU-

based plane sweep stereo (“PS”, Cornelis and Van Gool,

2005) with the widely used belief-propagation algorithm

of Felzenszwalb and Huttenlocher. (“BP”, 2006), and

with a recent top-of-the-line method (“Zach”, Zach et al,

2009), also using the GPU. On the one hand, modern

algorithms indeed yield improvements in both scene

analysis and tracking performance, but they come at

the cost of considerably higher runtime (20 ms for PS

vs. 30 s for Zach). On the other hand, depth maps are

only an intermediate result in our pipeline and are pro-

cessed with robust statistics. Therefore top-of-the-line

stereo matching does not yield huge improvements in

system performance, despite producing visibly better

depth maps.
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Track-level Evaluation. For a more fine-grained analy-

sis, it is instructive to look at the tracking results at tra-
jectory level. Automatic track-level evaluation of com-
plex scenes is still an unsolved problem. We therefore

resort to an interactive solution, which takes care of

the obvious assignments between tracking output and

ground-truth automatically, but which polls the user

when ambiguities arise. The distance between two tra-
jectories is defined as the distance between their corre-
sponding object positions, robustly4 averaged over the

two trajectories’ common lifetime. Formally,

d(Hj , Hk) =
1

|Hj ∩ Hk|

∑

ti∈Hj∩Hk

min
(
‖xti

j − xti

k ‖, dmax

)
.

Bahnhofstrasse Loewenplatz

ground truth 89 107

tracker 125 126
mostly tracked 0.55 0.48
partially tracked 0.30 0.27

mostly missed 0.15 0.25
false alarms 0.62 1.09
ID switches 16 6
latency 9.9/1.5 0.3/2.0

Table 2 Trajectory-based evaluation on Seq. Bahnhofstrasse

and Seq. Loewenplatz.

The metrics themselves then resemble the ones used

in other trajectory-level evaluations (Wu and Nevatia,

2007; Li et al, 2009): as background information, Ta-
ble 2 first reports the number of ground truth trajecto-
ries (GT) and the number of trajectories output by the

tracker (OT). Then the fraction of mostly tracked (resp.

missed) subjects is reported: each ground truth subject

is classified as either mostly tracked (best output tra-

jectory covers > 80% of the ground truth), partially

tracked (output covers 20–80% of the ground truth), or

mostly missed (estimate covers < 20% of the ground

truth). Furthermore, we report the average number of

false alarms per frame, the total number of identity

switches (i.e. cases where a trajectory with a new label

is started although the subject is still the same), as well

as the latency (the mean and median number of frames

until a trajectory is initialised after a subject enters the

field of view).

In both cases, few false alarms occur. Also, the frac-

tion of severe failures (“mostly missed”) is relatively

low. The fraction of only “partially tracked” subjects

as well as the mean latency are high. This is due to

the strict annotation: it often happens that a distant

4 The gating at distance dmax = 1 m is required to be robust
against inaccuracies of the ground truth—objects are annotated

in 2D, their depth has to be estimated from the bounding box.

0 2 4 6 8 10 12 14 16 18 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

isi
on

Prediction horizon (frames)

Bahnhof st rasse
Loewenplat z

Fig. 8 Precision of the tracker prediction for increasing predic-
tion horizon. Data was recorded at 12–14 fps.

pedestrian is visible for a few frames, then becomes

occluded for a long time before becoming visible at a

much smaller distance, whence he is picked up by the

tracker. Even in the best case, such a pedestrian will

produce an identity switch, since the occlusion lasts
too long to associate the two trajectories before and
after it. In the worst case, however, the subject will
only be picked up after leaving the occlusion, and hence

be reported as “mostly missed” or “partially tracked”.

This is confirmed by the mean latency, which is sig-

nificantly higher than the median, because the entire

track of these subjects before being detected counts as
latency. In Seq. Bahnhofstrasse, 9 out of 76 (mostly

or partially tracked) persons suffer from the aforemen-
tioned annotation problem and thus have latencies > 30

frames, severely biasing the mean latency. In fact, most
of the “partially tracked” subjects are quite well cov-
ered: reducing the threshold for “mostly tracked” to

70% would increase the corresponding fraction to 0.72.

Prediction. To assess the suitability for dynamic path

planning, we have also tested the accuracy of motion

prediction from the estimated trajectories for increas-

ing time horizons. This experiment is interesting, since

it allows one to quantify the possible improvement com-

pared to modelling all obstacles as static. We compare
the bounding boxes predicted by the tracker with the
actual annotations and count the fraction of false posi-
tives (1−precision). The results are shown in Fig. 8. As

expected, precision drops with increasing look-ahead,
but stays within acceptable limits for a prediction hori-
zon up to 1 second (12 frames). The experiment con-

firms that for reasonable prediction horizons, the accu-

racy does not drop greatly. This plot should be read

qualitatively: a precision of 0.9 does not imply erro-

neous re-planning in every 10th frame, because many

predicted objects do not affect the planned path.
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Fig. 9 Exemplary pedestrian tracking results on Seq. Linthe-

scher.
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Fig. 13 Distribution of platform-to-object distances for pedes-

trians (a) and cars (b) on Seq. Bellevue.

5.2 Qualitative Results

Example results for Seq. Linthescher are shown in

Fig. 9. This example highlights tracking through oc-
clusions: the woman entering from the left temporarily

occludes every other subject.

Example results for Seq. Bahnhofstrasse are shown
in Fig. 10. Note that both adults and children are identi-

fied and tracked correctly, even though they differ con-
siderably in their appearance. In the bottom row of
the figure, a man walks diagonally towards the cam-

era (tracked with a pink bounding box). Without mo-

tion prediction, a following navigation module might

issue an unnecessary stop here. However, our system

correctly determines that he presents no danger of col-

lision and resolves this situation. Also note how the
standing woman in the white coat gets integrated into
the static occupancy map as soon as she is too large to

be detected. This is a safe fallback in our system—when

no detections are available, its results simply revert to

those of a depth-integration based occupancy map.

Fig. 11 demonstrates pedestrian tracking from a car.

Compared to the previous sequences, the viewpoint is

somewhat higher. Pedestrians either cross from left to

right or are passed at high speed, therefore they stay

in the field of view for fewer frames. Nevertheless the
majority of pedestrians is tracked correctly.

Combined pedestrian and car tracking is demon-

strated in Fig. 12 for Seq. City and Seq. Bellevue.
Tracking cars is more complicated, because they are
on average more distant and require an ensemble of 5

different viewpoint-specific detectors. In Seq. City, a

further detector was trained for rear views of vans, in

order to be able to track vans like the one in the top

row of Fig. 12. Finally, Fig. 13 shows the depth distri-

bution of tracked pedestrians and cars for Seq. Belle-

vue. Especially cars in many cases appear at distances

of 30–50 m, where the localisation accuracy is as bad

as 2–5 m in depth, making trajectory generation with

smooth motion models difficult.

Computational Efficiency. For the real-time require-

ments of robotics or autonomous driving, computational

efficiency is of prime importance. The current imple-

mentation of the tracking system does not fully reach
this goal, in spite of fast GPU-implementations of stereo
matching and visual odometry. The bottleneck is object

detection with HOG (6 seconds per image). However,

recently a parallel HOG-implementation on the GPU

has been presented (Wojek et al, 2008). We have not yet

integrated GPU-HOG into our software, but estimate

the integration will bring down the processing time for

a frame below 0.5 seconds. A real-time system in the

near future thus seems within reach.

6 Concluding Remarks

We have described an object tracking system for dy-

namic path planning and mobile navigation. The sys-

tem operates in world coordinates on a dynamically

varying ground plane. The core tracking part of the

system uses as observations the output of appearance-
based detectors for the relevant object categories, in
our case pedestrians and cars. At each frame, a redun-
dant set of candidate trajectories is generated by start-

ing standard EKF-trackers from different observations

in the past and present. At this stage, the semantic

information from object category detection allows our

approach to employ the correct motion model for the

object at hand. In a second stage, the set of trajectory

candidates is pruned to a set with maximal joint like-

lihood using model selection. Two main characteristics

of the proposed tracking system are that it continu-
ously processes observations from a long time interval,
rather than only considering the immediate past, and

that it enables physically correct modelling of space-

time violations, rather than only enforcing a unique

data association. These extensions significantly improve

tracking in the presence of realistic, complex interac-

tions between multiple objects, including prolonged oc-

clusion. The system has been evaluated on challenging

sequences and manages to track most objects of interest

over extended periods of time. The experiments support

our claim that reliable tracking from a mobile observer

in busy urban scenarios is possible and that robust sys-

tems are within reach.
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Fig. 10 Example results (pedestrians only) for Seq. Bahnhofstrasse.

Various extensions could potentially improve the cur-

rent performance: the employed object detector proved
to be surprisingly powerful, but object category detec-

tion is still an active field of research, and performance

gains through more complete and more accurate detec-

tors can be expected. In the long-term it would also

make sense to focus only on the relevant scene agents,

rather than track all of them, however this will require

significant progress in modelling visual attention, which

is still a problem.

Also, the employed motion models are rather simple

and might be unable to handle erratic motions. More

importantly, they do not take any information about

the environment into account, although the path plan-

ning of real pedestrians and cars, respectively, is cer-

tainly influenced by the surrounding scene. Another ob-

vious extension would be a discriminatively trained ap-

pearance model in order to better keep different scene

objects apart. Last but not least, the success of model
selection depends on a compact set of hypotheses, which
nevertheless contain strong instances of all correct tra-

jectories. Here, ideas from other global trackers could be

implemented to, e.g ., link secure tracklets and prevent

unnecessary hypothesis generation by applying infor-

mation theoretic methods that spend more time sam-

pling in difficult regions of the hypothesis space. An-

other challenge is the inclusion of occlusion reasoning

directly into the model selection.

On the whole, we believe that visual tracking, to-
gether with other scene understanding capabilities which

are also steadily improving, will play an important role

for future autonomous driving and robotics.
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A Index to Multimedia Extensions

Multimedia extensions to this article are at http://www.ijrr.org.

1 video tracking result on sequence Bahnhofstrasse

2 video tracking result on sequence Linthescher

3 video tracking result on sequence Loewenplatz
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