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Abstract

We present a mobile vision system for multi-person track-

ing in busy environments. Specifically, the system integrates

continuous visual odometry computation with tracking-by-

detection in order to track pedestrians in spite of frequent

occlusions and egomotion of the camera rig. To achieve re-

liable performance under real-world conditions, it has long

been advocated to extract and combine as much visual in-

formation as possible. We propose a way to closely inte-

grate the vision modules for visual odometry, pedestrian de-

tection, depth estimation, and tracking. The integration nat-

urally leads to several cognitive feedback loops between the

modules. Among others, we propose a novel feedback con-

nection from the object detector to visual odometry which

utilizes the semantic knowledge of detection to stabilize lo-

calization. Feedback loops always carry the danger that er-

roneous feedback from one module is amplified and causes

the entire system to become instable. We therefore incor-

porate automatic failure detection and recovery, allowing

the system to continue when a module becomes unreliable.

The approach is experimentally evaluated on several long

and difficult video sequences from busy inner-city locations.

Our results show that the proposed integration makes it pos-

sible to deliver stable tracking performance in scenes of

previously infeasible complexity.

1. Introduction

Computer vision has seen tremendous progress in recent

years. Many individual disciplines have advanced to a state

where algorithms are becoming applicable for real-world

tasks. These successes have fostered the demand for ac-

tual vision systems. In particular, there is a strong need for

mobile vision systems than can operate in unconstrained

scenarios of daily human living. Building such systems

has been a far-end goal of scene understanding since the

1970ies, but it is also a crucial requirement for many ap-

plications in the near future of mobile robotics and smart

vehicles. So far, however, the sheer complexity of many real-

world scenes has often stymied progress in this direction.

In this paper, we focus on an important building block for

mobile vision applications, namely the capability to track

multiple people in busy street scenes as seen from a mobile

observer. This could be a mobile robot, an electric wheel-

chair, or a car passing through a crowded city center. As can

be seen in the above figure, such a scenario puts extreme

demands on the underlying vision algorithms. Many people

are walking through the system’s field of view, crossing and

occluding each other, undergoing large scale changes, and

occasionally even blocking almost the entire scene.

It has long been argued that scene analysis in such com-

plex settings requires the combination of and careful inter-

play between several different vision modules. However, it

is largely unclear how such a combination should be under-

taken and which properties are critical for its success. In this

paper, we propose a specific design how to integrate visual

odometry, depth estimation, object detection, and tracking,

and demonstrate its applicability in practice.

One important component of the proposed integration is

the concept of cognitive feedback. The underlying idea is

to derive higher-level semantic information from one vision

module and feed it back to the other modules in order to im-

prove performance there. Several instantiations of this con-

cept have been successfully demonstrated in recent years,

among them the feedback from recognition to segmenta-

tion [4, 17], from geometry estimation to object detection

[13, 15], and the often-used feedback from tracking to de-
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tection (e.g. [16]). Here, we propose another such feedback

path, namely to make visual odometry more robust through

semantic information from object tracking.

However, the creation of feedback loops always carries

the danger that measurement noise may be picked up and

amplified to the point that the entire system becomes un-

stable (as in the case when a microphone is held too close

to a connected loudspeaker). An important design ques-

tion is therefore how to avoid such instabilities and guaran-

tee robust performance. We specifically address this ques-

tion by incorporating automatic failure detection and cor-

rection mechanisms into our system and show how they in-

teract to stop error amplification. As our experiments will

demonstrate, the resulting system achieves robust multi-

object tracking performance on very challenging video data.

The paper is structured as follows. After discussing re-

lated work in the following section, Section 3 describes the

different components of our system and their interactions in

detail. Section 4 then introduces our novel cognitive feed-

back and shows how it improves system robustness. Finally,

Section 5 presents experimental results.

2. Related Work

Visual Odometry. The majority of the work in visual

odometry (VO) is based on local features and RANSAC-

type hypothesize-and-test frameworks [21, 25]. Some other

approaches include Hough-like methods [19] or recursive

filtering [7, 8]. Most of these have however not been

demonstrated on extended runs in realistic outdoor scenar-

ios. The main problem with all these methods is the as-

sumption that a dominant part of the scene changes only

due to camera egomotion. As a result, these approaches are

prone to failure in crowded scenes with many independently

moving objects. While there has been work on multi-body

Structure-from-Motion [18, 23], most systems are still con-

strained to short videos, and more importantly, assume suf-

ficiently large, rigidly moving objects. In robotics, various

approaches for SLAM in dynamic environments [3, 11] ex-

ist, related to the above, but mostly focusing on range data.

In this paper, we propose to explicitly feed back informa-

tion from object tracking to egomotion estimation, thereby

introducing semantics.

Object Detection. Pedestrian detection has reached an im-

pressive level [5, 17, 26, 27, 28]. By themselves, many

available approaches already perform quite well on indi-

vidual images. However, in order to achieve robustness to

adverse imaging conditions, it is necessary to supply them

with additional information. Examples for such supple-

ments include motion cues [27, 6], stereo depth [10, 9],

scene geometry [13, 15], or feedback from tracking [28,

16]. In this paper, we will integrate the latter three cues.

Multi-body Tracking. Many approaches are available for

Pose prediction Object detection

Depth generation

Pose estimation

Object tracking

Visual odometry Tracking

Figure 1. (Left) Mobile recording system equipped with camera

pair. (Right) Components of our mobile vision system and their

connections, executed for each frame of a video sequence. The

dashed arrows indicate the novel cognitive loop examined in this

paper.

multi-object tracking from stationary cameras (e.g. [2, 14]).

The task is however made considerably harder when the

camera itself can move. In such cases, background sub-

traction is no longer a viable option, and tracking-by-

detection approaches seem to be the most promising alter-

native [22, 10, 15, 28].

For applications on moving vehicles, it has been shown

that visual odometry can considerably help tracking, allow-

ing it to operate in 3D world coordinates [15]. In this paper,

we will complete this interaction to a loop by also feeding

back information from tracking to help visual odometry. As

we will show in Section 4, such a feedback is crucial for

robust performance in crowded scenes. A similar idea for

stabilizing visual odometry was suggested by [29]. How-

ever, their method is solely based on feature points (without

occlusion handling). Thus, it does not incorporate seman-

tics and is not suitable for articulated motions.

3. System

Our system is based on a mobile platform that is

equipped with a pair of forward-looking cameras. Fig. 1

gives an overview of the proposed vision system. For each

frame, the blocks are executed as indicated: first, a depth

map is calculated, and the new frame’s camera pose is pre-

dicted. Then objects are detected, taking advantage of tra-

jectory knowledge and depth information. One of the nov-

elties of this paper is to use this output for stabilizing visual

odometry, which updates the pose estimate for the platform

and the detections, before running the tracker on these up-

dated detections. The whole system is held entirely causal,

i.e. at any point in time, we only use information from the

past and present frame pairs. The following subsections de-

tail the three main components of the system, as well as how

they are implemented in a robust manner.

3.1. Object Detection

The graphical model of Fig. 2 represents the core of

our tracking-by-detection system. It builds upon ideas for

single-frame scene analysis by [13, 9], but adapts their mod-

els with several improvements. It performs inference over



object detections oi, supported by a ground plane π and

local depth measurements di. Data is extracted per frame

from the image I and the stereo depth map D.

Briefly stated, the graphical model operates as follows.

For each frame, a set of object hypotheses is provided by

an object detector. Based on these, a stereo depth map, and

prior information, the model structure is built up. Belief

propagation is then used to find a geometrically consistent

set of hypotheses, before a global optimization step resolves

object-object occlusions.

Compared to earlier work, our model contains the fol-

lowing improvements: firstly, we detect occlusions in the

depth maps (using a left-right check between the two

views), which results in an occlusion map O. This infor-

mation is used to explicitly re-weight the prior of the depth

flag P (di) according to the level of occlusion in the depth

map: in areas with missing depth estimates due to occlu-

sion or otherwise insecure estimates, confidence in this cue

is reduced. On the one hand, this is important in case of near

objects that cause large occlusions. On the other hand, this

also allows one to increase the confidence in the depth map

in the remaining regions. Thus, not only the performance

of the graphical model is improved, but object detections

can be placed more accurately in world space using depth

information instead of backprojecting bounding boxes.

Secondly, we remove the only explicit cycle between π

and di compared to [9], which simplifies the belief propaga-

tion algorithm used for inference and increases its stability.

Using this new model, inference becomes:

P (πt,πt−1, oi, di, E) = P (πt|πD)P (πt|πt−1)
∏

i

Qi (1)

Qi = P (oi|πt, di)P (oi|Ht0:t−1)P (I|oi)P (D|di)P (O|di),

where E = {I,D,O,πD,Ht0:t−1} is the available evi-

dence. An object’s probability P (oi|πt, di) depends both

on its geometric world features (distance, height) and its

correspondence with the depth map (distance, uniform

depth). The factor P (oi|Ht0:t−1) incorporates past trajec-

tories H and P (I|oi) the detector’s probability. The time

indices were omitted from oi and di for the sake of brevity.

Finally, we introduce temporal dependencies, indi-

cated by the dashed arrows in Fig. 2. For the ground

plane, we propagate the previous state as a temporal prior

P (πt|πt−1) = (1 − α)P (πt)+αP (πt−1) that augments

the per-frame information from the depth map, P (πt|πD).
For the detections, we add a spatial prior for object loca-

tions that are supported by candidate trajectories Ht0:t−1

from tracking. As shown in Fig. 2, this dependency is non-

Markovian due to the tracking framework explained in the

following section. For details on training of the graphical

model, we refer to [9].
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Figure 2. Graphical model for tracking-by-detection with addi-

tional depth information.

3.2. TrackingbyDetection

Object detections are placed into a common world frame

using camera positions estimated from visual odometry.

The actual tracking system follows a multi-hypotheses ap-

proach, similar to the one described in [16]. We do not rely

on background subtraction, but instead accumulate detec-

tions of the current and past frames in a space-time volume.

This volume is analyzed by growing trajectory hypothe-

ses using independent Kalman filters. By starting this anal-

ysis from various points in time, an overcomplete set of tra-

jectories is obtained, and pruned to a consistent estimate us-

ing model selection. Overlapping trajectory hypotheses are

resolved with a global optimization step, in which trajecto-

ries compete for detections and space-time volume. For the

mathematical details, we refer to [16]. The selected trajec-

tories H are then used in the next frame to provide a spatial

prior for the object detections.

The most important effects of this are automatic track

initialization (usually, after about 5 detections), as well as

the ability to recover temporarily lost tracks, thus enabling

the system to track through occlusions. Obviously, such

a tracking system critically depends on an accurate and

smooth egomotion estimate.

3.3. Visual Odometry

To allow reasoning about object trajectories in the world-

coordinate frame, the camera position is estimated using vi-

sual odometry. The employed system builds on previous

work by [21]. See Fig. 3 for a flow diagram. In short, each

incoming image is divided into a grid of 10×10 bins, and

an approximately uniform number of points is detected in

each bin using a Harris corner detector with locally adap-

tive thresholds. This encourages a feature distribution that

allows stable localization. In the initial frame, stereo match-

ing and triangulation provide a first estimate of the 3D struc-

ture. In subsequent frames, we use 3D-2D matching to get

correspondences, followed by RANSAC with 3-point pose

[20]. Bundle adjustment is run on a window of nb = 18
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Figure 3. Flow diagram of the employed visual odometry system.

The shaded regions indicate the insertion points for the feedback

from object tracking.

past frames, smoothing the trajectory. Older frames are dis-

carded, along with points that are only supported by these

removed frames.

The key differences to previous systems are the use of

3D-2D matching to bridge temporally short occlusions of

a feature point and to filter out independently moving ob-

jects at an early stage, as well as the use of a Kalman

filter to predict the next camera position for object de-

tection. This makes feature selection similar to the ac-

tive search paradigm known from the SLAM literature

[7]. Scene points are directly associated with a viewpoint-

invariant SURF descriptor [1] that is adapted over time. In

each frame, the 3D-2D correspondence search is then con-

strained by the predicted camera position. As mentioned

above, only scene points without support in the past nb

frames are discarded. This helps bridging temporally short

occlusions (e.g. from a person passing through the image)

by re-detecting 3D points that carry information from multi-

ple viewpoints and are hence more stably localized. Attach-

ing 2D descriptors to coarse 3D geometry is also a recent

trend in object recognition [24].

In order to guarantee robust performance, we introduce

an explicit failure detection mechanism. In case of failure,

the Kalman filter estimate is used instead of the measure-

ment; all scene points are cleared; and the VO system starts

anew. This allows us to keep the tracker running without

resetting it. While such a procedure may introduce a small

drift, a locally smooth trajectory is more important for our

application than accurate global localization. We believe

that the latter is best done by integrating different sensor

modalities, such as GPS and INS, see e.g. [30].

3.4. Failure Detection

For systems to be deployed in real-life scenarios, fail-

ure detection is an often overlooked, but critical component.

In our case, ignoring odometry failures can lead to erratic

tracking behavior, since tracking is performed in 3D world

coordinates. As tracking is in turn used to constrain VO,

those errors may be amplified further. Similarly, the feed-

back from object tracking as a spatial prior to detection can

potentially lead to resonance effects if false detections are

integrated into an increasing number of incorrect tracks. Fi-

nally, our system’s reliance on a ground plane to constrain

object detection may lead to incorrect or dropped detections

if the ground plane is wrongly estimated. As our system re-

lies on the close interplay between all components, each of

these failure modes could in the worst case lead to system

instability and must be addressed.

Visual Odometry. To detect visual odometry failures, we

consider two measures: firstly the deviation of the calcu-

lated camera position from the smoothed filter estimate and

secondly the covariance of the camera position. Thresholds

can be set for both values according to the physical prop-

erties of the moving platform, i.e. its maximum speed and

turn rate. Note that an evaluation of the covariance is only

meaningful if based on rigid structures. Moving bodies with

well distributed points could yield an equally small covari-

ance, but for an incorrect position. When dynamic objects

are disregarded, the covariance gives a reliable quality esti-

mate for the feature distribution.

Note: while it would be possible to constrain pose sam-

pling during RANSAC, this would not alleviate the problem

of correspondences on moving objects. We therefore also

use semantic information from object tracking, as will be

explained in Section 4.

Object Tracking. Failure detection and correction is acco-

modated by the construction of our tracking approach. In-

stead of relying on a Markov assumption for propagating

tracks over time, this approach builds upon a model selec-

tion framework to optimize tracks over a larger temporal

window, similar to [16]. At each time instant, the track-

ing module explores a large number of concurrent track hy-

potheses in parallel and selects the most promising subset.

This means that it can compensate for tracking errors and

recover temporarily lost tracks.

Object Detection and Ground Plane Estimation. These

two components are kept stable by the continuous use of

additional information from stereo depth. Depth measure-

ments are employed both to support the ground plane esti-

mate and to verify object detections. Thus, false predictions

from the tracking system are corrected. In addition, the tem-

poral prior P (πt−1) smoothes noisy measurements.

4. Cognitive Feedback to Visual Odometry

Standard algorithms for visual odometry assume a pre-

dominantly static scene, treating moving objects just the

same as incorrect correspondences. Most systems use ro-

bust hypothesize-and-test frameworks such as RANSAC or

Least-Median-of-Squares for removing such outliers. Re-

cently, some multi-body Structure-from-Motion systems

have been demonstrated on realistic video scenes [18].

However, those remain constrained to rigidly moving bod-

ies such as cars, and require a sufficient number of interest

points for each model. We show that the use of basic scene

understanding can effectively stabilize visual odometry by

constraining localization efforts on regions that are likely to
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Figure 4. Trajectory estimation of our system with and without cognitive feedback. (Top) A few frames of a difficult sequence. (Middle)

(Left) Example confidence map used by the cognitive feedback to adapt corner sampling. (Right) Trajectory estimates. (Bottom) (Left)

Recall/false positives for single detections with standard VO and VO using feedback. (Right) Tracking results with cognitive feedback. As

can be seen, the proposed feedback greatly stabilizes the egomotion estimation and leads to stable tracks. (Figure best viewed in color)

be part of the rigid scene.

In order to underline the importance of the proposed in-

tegration, consider the scene shown in Fig. 4, taken from

one of our recordings. Here, our mobile platform arrives at

a pedestrian crossing and waits for oncoming traffic to pass.

Several other people are standing still in its field of view,

allowing standard VO to lock onto features on their bodies.

When the traffic light turns green, everybody starts to move

at the same time, resulting in extreme clutter and blotting

out most of the static background. Since most of the scene

motion is consistent, VO fails catastrophically (as shown in

the red curve). This is of course a worst-case scenario, but it

is by no means an exotic case — on the contrary, situations

like this will often occur in practical outdoor applications

(we present another example in the results section).

Spatial binning for feature selection (as promoted in

[21, 30]) improves the result in two respects: firstly, spa-

tially better distributed features per se improve geometry

estimation. Secondly, binning ensures that points are also

sampled from less dominant background regions not cov-

ered by pedestrians. Still, the resulting path (shown in blue)

contains several physically impossible jumps. Note here

that a spike in the trajectory does not necessarily have to

stem from that very frame. If many features on moving ob-

jects survive tracking (e.g. on a person’s torso), RANSAC

can easily be misled by those a few frames later. Failure de-

tection using the Kalman filter and covariance analysis (in

green) reduces spiking further, but is missing the seman-

tic information that can prevent VO from attaching itself to

moving bodies. Finally, the magenta line shows the result

using our complete system, which succeeds in recovering a

smooth trajectory. Detection performance improves as well

(bottom row, left): when measuring recall over false posi-

tives per image (FPPI) on single detections, recall increases

by 6% at 0.5 FPPI when using the cognitive feedback. A

few example frames are displayed in the bottom right, con-

firming that the VO estimates also result in more plausible

and correct tracks.

The intuition behind our proposed feedback procedure is

to remove features on pedestrians using the output of the ob-

ject tracker. For each tracked person, we mask out her/his

projection in the image. If a detection is available for the

person in the current frame, we use the confidence region

returned by the object detector (in our case an ISM [17]).

If this region contains too large holes or if the person is not

detected, we substitute an axis-aligned ellipse at the per-

son’s predicted position. A few example masks are shown

in Fig. 4(middle row, left).

Given this object mask for a frame, we now adapt the

sampling of corners. In order to ensure a constant number

of features, we adapt the number of corners to look for in

bin i as follows

Ni =
Norg(1 − p

(i)
o )

1 −
∑

i
p
(i)
o /nbins

, (2)



VO Inliers

Seq. # Frames Dist Standard w/ Feedback

#1 220 12m 30% 40%

#2 1’208 120m 27% 33%

#3 999 110m 39% 41%

#4 950 82m 40% 45%

#5 840 43m 12% 32%

Table 1. Overview of used test sequences (frames, approx. trav-

elled distance), along with average percentage of VO inliers. The

cognitive feedback consistently improves the inlier ratio, espe-

cially in highly dynamic scenes (#1,#5).

with Norg the originally desired number of corners per bin,

p
(i)
o the percentage of occluded pixels in bin i, and nbins

the number of bins (in our case nbins = 100). Corners are

only sampled from unmasked pixels. Even with imperfect

segmentations, this approach improves localization by sam-

pling the same number of feature points from regions where

one is more likely to find rigid structure.

While this pedestrian crossing example represents a

worst-case scenario for VO, the beneficial effect of the pro-

posed cognitive feedback can also be seen in less extreme

cases. For instance, for Seq. #2 (see Table 1), estimated

walking speed before Kalman filtering only spikes 15 in-

stead of 39 times (in 1’200 frames) above a practical up-

per limit of 3 meters/second when using cognitive feed-

back. This means that the fallback options are used less

frequently, and in turn that dead reckoning and hence intro-

duction of drift are reduced. By optimizing the sampling

locations, the feedback generally improves the feature dis-

tribution and thus also the number of inliers. This can be

seen in Table 1 for several test sequences (the other se-

quences will be introduced below) and also has practical

consequences regarding speed: for RANSAC, the number

of iterations M = log(1 − p)/ log(1 − (1 − η)3)) is in our

case only controlled by the percentage of expected outliers

η [12]. The desired probability p = 0.99 of an outlier-free

solution and the number of points needed to produce a hy-

pothesis is constant for our problem. In most of our exam-

ples, the increased number of inliers translates to about half

the necessary samples.

5. Results

In order to evaluate our vision system, we applied it

to another four sequences, showing strolls through busy

pedestrian zones. In total, we thus used 4’200 frames.

All sequences were acquired with similar mobile platforms

and consist of two synchronized video streams recorded at

15fps.1 The first such sequence (“Seq. #2”) extends over

1’208 frames. We manually annotated all visible pedestri-

ans in every fourth frame, resulting in 1’894 annotations.

As additional baseline, we include a sequence (“Seq. #3”)

1Paper website: http://vision.ee.ethz.ch/˜aess/cvpr2008

from [9] with 5’193 annotations in 999 frames. Finally, as

a demonstration of the breaking point of our system, we

show two other sequences with fast turns (“Seq. #4”) and

an extreme number of moving pedestrians (“Seq. #5”). For

testing, all system parameters are kept the same throughout

all sequences.

We quantitatively measure performance by comparing

generated and annotated bounding boxes and plotting re-

call over false positives per image. Fig. 5 shows perfor-

mance plots for Seqs. #2 and #3. Besides raw detector

output (“Detector”), we consider two additional baselines:

firstly, we emulate the system of [16] by an offline step of

running VO, fitting ground planes through wheel contact

points, and then running our tracker without depth-map in-

formation (“Tracker baseline”). Secondly, for Seq #3, we

use the baseline from [9] (“GM baseline”). Even though

our proposed system needs a few frames before initializing

a track (losing recall) and even though it reports currently

occluded hypotheses (increasing false positives), both base-

lines are clearly outperformed.

An interesting observation is the bad performance of the

baseline tracker on Seq. #3. Here, the detector yields mul-

tiple hypotheses at different scales for many pedestrians.

Due to the low camera placement, these cannot be disam-

biguated by the ground plane alone. Thus, misplaced detec-

tions generate wrong trajectories that in turn encourage bad

detections, resulting in a very unstable system. Our system

breaks this vicious circle by using depth information.

For Seqs.#2 and #5, Fig. 6 shows the driven trajectories

overlayed on an aerial image using manually picked control

points. For Seq. #5, we also show the trajectory obtained

without cognitive feedback — as with the densely crowded

Seq. #1, the VO system cannot cope with the complexity of

the scene without semantic information.

We manually evaluated tracking performance in 450
frames of Seq. #2 using similar criteria as described in [28]

(Tab. 2). We consider the number of pedestrians, the num-

ber of trajectories (if a pedestrian is occluded for > 10
frames, we count a new trajectory), the number of mostly

hit trajectories (> 80% covered), mostly missed trajecto-

ries (< 20% covered), the number of false alarms, and the

number of ID switches (meaning the tracker drifts from one

person to another). On average, 75% of a trajectory are cov-

ered by the tracker. The missed trajectories belong mostly

to pedestrians at smaller scales, and to two children that do

not fit the size prior. Example tracking results for Seq. #2

are shown in Fig. 8. Our system’s ability to track through

occlusion is demonstrated in the top row: please note how

the woman entering from the left has temporarily occluded

almost every part of the image. Still, the tracker manages to

pick up the trajectory of the woman on the right again (in

red). Fig. 9 shows additional tracking results for Seqs.#3,

#4, and #5. Again, our system manages to produce long
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30 45 36 6 4 2
Table 2. Quantitative tracking results for part of Seq. #2. (see text)
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Figure 5. Single-frame detection performance on Seq. #2 and #3.

Figure 6. Travelled paths for Seqs. #2 and #5, overlaid on aerial

images. (Right: result without feedback in blue, dashed)

Figure 7. Typical false negatives (pedestrians at large scales) and

false positives (reflections, trees) of our system.

and stable tracks in complex scenarios with a considerable

degree of occlusion. In the top row, a pedestrian gets suc-

cessfully tracked on his way around a few standing people

and two pedestrians are detected at far distances. The mid-

dle row again demonstrates tracking through major occlu-

sion. Finally, the bottom row shows an example scenario

from Seq. #5 with many pedestrians blocking the camera’s

field-of-view. As mentioned above, scenes of this complex-

ity are at the limit of what is currently possible with our sys-

tem. The solution of such scenarios still needs further work.

This will also address typical failures, as seen in Fig. 7.

6. Conclusion

In this paper, we have presented an integrated system for
multi-person tracking from a mobile platform. The different
modules (here, appearance-based object detection, depth es-
timation, tracking, and visual odometry) were integrated us-
ing a set of feedback channels. This proved to be a key
factor in improving system performance. We showed that

special care has to be taken to prevent system instabilities
caused by erroneous feedback. Therefore, a set of failure
prevention, detection, and recovery mechanisms was pro-
posed. The resulting system can handle very challenging
scenes. Still, there is some way to go before it becomes
deployable in a real-world application. The individual com-
ponents still need to be optimized further, both with respect
to speed and performance. For instance, very close pedes-
trians, with only parts of their torso visible, are often missed
by the current detector. A graceful degradation in form of
image-based tracking might be a possibility to prevent sys-
tem breakdown in such cases. Further combinations with
other modules, such as world knowledge inferred e.g. from
map services, provide other exciting feedback possibilities
that we plan to investigate in the future.
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