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Abstract
In this paper we propose a novel Conditional Random

Field (CRF) formulation for the semantic scene labeling
problem which is able to enforce temporal consistency be-
tween consecutive video frames and take advantage of the
3D scene geometry to improve segmentation quality. The
main contribution of this work lies in the novel use of a 3D
scene reconstruction as a means to temporally couple the
individual image segmentations, allowing information flow
from 3D geometry to the 2D image space. As our results
show, the proposed framework outperforms state-of-the-art
methods and opens a new perspective towards a tighter in-
terplay of 2D and 3D information in the scene understand-
ing problem.

1. Introduction
Visual scene understanding from moving platforms has

become an area of very active research, and many ap-
proaches have been proposed towards this goal in recent
years [16, 27, 4, 25, 5, 7]. Multi-class image segmen-
tation has become a core component for many of those
approaches, as it can provide semantic context informa-
tion to support the higher-level scene interpretation tasks
[27, 4, 15]. This development has been assisted by signif-
icant improvements in state-of-the-art segmentation frame-
works [24, 14, 15]. In this paper, we build upon this recent
progress in order to address the problem of segmenting ur-
ban street scenes into semantically meaningful classes, such
as road, building, street marking, car, etc. (see Fig. 1).

Despite their motivation by mobile applications, most
previous semantic scene segmentation approaches operate
on individual 2D images (e.g., [4, 14, 9]) or single stereo
pairs [15], ignoring temporal continuity information. We
believe that such single-frame semantic segmentation is
fundamentally limited, since at any point in time, large parts
of the scene will not be visible at sufficient resolution to
make confident decisions. As mobile platforms often have
the capability to move through the scene and observe it from
several viewpoints, we argue that scene understanding sys-
tems should make use of this temporal information to en-
force temporal consistency between the semantic labelings
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Figure 1. We propose a novel approach to integrate temporal con-
sistency and local 3D geometry information into CRF image seg-
mentation formulations. ((a) input image; (b) ground truth labels;
(c) sematic segmentation results; (d) semantic 3D reconstruction).

acquired at different time steps.
It has also been argued that 3D information plays an

important role for scene understanding, and several ap-
proaches have been developed to estimate 3D information
from single 2D images as part of the semantic segmenta-
tion process [11, 9, 26, 7]. In parallel, a line of interesting
research has emerged on segmentation of 3D point clouds
acquired from highly accurate 3D laser range sensors (e.g.,
Velodyne) [18, 19]. So far, however, there has been no con-
nection between those two research areas. We aim at bridg-
ing this gap by incorporating directly estimated 3D infor-
mation into the 2D image segmentation process. In contrast
to [18, 19, 23], we however derive our 3D information from
dense stereo depth, which is far noisier than laser data and
which therefore requires special provisions.

In this paper, we propose a unified framework which in-
corporates both of those motivations. We introduce a novel
CRF framework which forms temporal consistency con-
straints over consecutive frames through higher-order po-
tentials defined on the points of a local 3D point cloud re-
construction (see Fig. 1(d)). Our framework offers a prin-
cipled way to incorporate local 3D geometry information



into 2D semantic labeling algorithms. At the same time, the
enforced temporal consistency plays an important role in
order to smooth the 3D depth measurements over time and
thus reduce the noise in 3D estimation. By formulating our
model in compliance with the PN based hierarchical CRF
framework proposed in [14], we make inference tractable,
allowing for efficient Graph-Cuts optimization. As our ex-
periments will show, the resulting model achieves superior
segmentation performance on several challenging data sets.

The paper is structured as follows. The following sec-
tion discusses related work. Section 3 gives an overview
of CRF-based semantic segmentation methods. Section 4
then presents a detailed description of our novel energy for-
mulation, including two new types of potentials. Finally,
Section 5 presents experimental results.

2. Related Work
Graphical models, and CRFs in particular, have devel-

oped into a remarkable tool for the multi-class image la-
beling problem. Starting from the influential TextonBoost
framework [24], a long line of research has made consistent
improvements to the CRF formulation, resulting in consid-
erable advances in the achievable segmentation quality. Es-
pecially the recently introduced robust PN potentials [12]
and their hierarchical forms [14] are particularly appealing,
since they make it possible to capture finer details by enforc-
ing consistency between pixels belonging to the same im-
age segment. Although enforcing higher-order constraints,
inference using those potentials is kept tractable within the
powerful Graph-Cuts optimization framework.

A number of approaches have combined image segmen-
tation with object detection and tracking components to tar-
get the scene analysis and scene understanding problems.
Geiger et al. [5] proposes a Markov Chain Monte Carlo
framework to infer the geometrical and topological prop-
erties of the scene together with the semantic activities tak-
ing place in the scene. 3D scene geometry is also used in
the work of Gupta et al. [9] in the form of physical con-
straints in an attempt to improve the scene labeling qual-
ity by discarding physically implausible environments to be
modeled. While there have also been a number of contribu-
tions combining segmentation with 3D information, either
by integrating monocular structure-from motion (SfM) [25]
or stereo disparity [15], none of them explicitly enforces
temporal consistency between the subsequent video frames.

On the other hand, there has been a lot of work done ex-
clusively in 3D, where the target is to semantically segment
3D point clouds into different classes. Munoz et al. [18] use
an Associative Markov Network (AMN) for performing in-
ference in a graph defined over the 3D points using mainly
spectral and directional features. Xiong et al. [28] extend
the 3D feature set of [18] by computing contextual features
over regions of points resulting in improved segmentation
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Figure 2. Visualization of the CRF framework, with unary po-
tentialsψi, pairwise potentialsψij , and higher-order potentialsψc.

performance. Finally, Shapovalov et al. [23] use structured
prediction algorithms to learn class-specific parameters for
the pairwise potentials of their Markov network which was
defined on the 3D points.

In this work we propose a novel framework that com-
bines the advantages of CRF-based approaches in 2D with
local 3D information coming from a point-cloud recon-
struction. We incorporate temporal consistency constraints
within a temporal window by linking corresponding image
pixels to the inferred 3D scene point. This formulation
allows us to incorporate additional information about the
scene content inferred from the point’s 3D neighborhood.
Both types of constraints are realized through novel poten-
tials in a CRF formulation.

3. CRFs for Scene Understanding
In this section we provide a brief description of the stan-

dard CRF model used in multi-class image labeling and of
the relevant notation. We closely follow the notation con-
vention used in [13].

Consider a set of target variables Y = {Y1, ..., Yk}.
The CRF is defined on a graph G = (V,E) consisting of
N nodes (i.e. |V | = N ), where each node of the graph
is represented with a random variable Yk. Each variable
Yk ∈ Y is allowed to take values from the discrete do-
main L = {l1, l2, ..., lk}. Therefore, a labeling y =
{Yi|i ∈ V } with values lying in L represents a sample
from the configuration space YN . The variables Y form
a CRF if the probability of a labeling p(y) is strictly pos-
itive for all y and p(yi, yE) = p(yi|yV i), where E repre-
sents the neighboring nodes of i. A CRF is globally con-
ditioned on the set X of observed variables and the dis-
tribution p(y|X) is a Gibbs distribution of the following
form: p(y|X) = 1

Z exp(−
∑

c∈C VC(y)), where Z is a
normalization constant, C is the set of maximal cliques in
the graph G and VC(y) represents the clique potentials. Ac-
cording to the Maximum A Posteriori (MAP) estimation,
the most probable label assignment ŷ of the CRF is given
as the minimum Gibbs energy over the possible labelings
ŷ = argmaxy∈YN p(y|X) = argminy∈YN E(y).

In this paper, we consider PN -based hierarchical CRF
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Figure 3. CRF model. A set of images are optimized together and label consistency is enforced through the temporal consistency potentials
which connect the different images through the underlying 3D reconstructions. 3D unary potentials are also added to capture discriminative
features of the local geometry around the 3D points.

models as proposed in [12, 14] for the multi-class image la-
beling problem, whose energy functions E(y) take the fol-
lowing form

E(y) =
∑
i∈V

ψi(yi) +
∑

(i,j)∈E

ψij(yi, yj) +
∑
c∈S

ψc(yc). (1)

The unary potentials ψi and the pairwise potentials ψij are
defined on the pixel level, whereas the higher-order poten-
tials ψc are defined on a set of segments (see Fig. 2). For the
unary potentials the TextonBoost framework [24] has been
extended similarly to [14] to use multiple features such as
SIFT [17], LBP [21], and textons densely extracted from the
images. The same framework is used also for the compu-
tation of the segment potentials, using the normalized his-
tograms of the dense features [14] as a new feature on the
segment level. Finally, for the pairwise potentials a contrast
sensitive Potts model [24] is used.

This energy formulation in the form of a PN -based hier-
archical CRF has shown very good performance in practice.
The particular appeal of this model lies in the integration of
information from different quantizations of the image space
into a unique framework, enabling joint optimization. How-
ever, this approach is still working on a single-frame basis,
despite the fact that the input is often a video sequence. Fur-
thermore, the above framework is solely based on 2D infor-
mation coming from image features, ignoring the geometric
information of the 3D scene which is in many cases critical
in order to achieve a better scene understanding.

We believe that temporal consistency should be enforced
between consecutive frames and that this could be done in
a principled way by estimating the underlying 3D geome-
try of the scene. Moreover, we argue that the 3D geome-
try can contribute to the improvement of the segmentation
quality as some scene properties have a clear meaning only
when a 3D reconstruction is available. In the next section
we present our proposed framework, which integrates tem-
poral consistency and scene geometry information in a prin-
cipled manner in a single CRF.

4. Approach
As discussed in the previous section, we propose a novel

CRF model which incorporates temporal consistency be-
tween consecutive frames and which integrates 3D infor-
mation from scene geometry. For this, we extend the en-
ergy formulation described in Eq. 1 by adding two more
types of potentials, temporal consistency potentials and 3D
unary potentials (see Fig. 3). In particular, we propose to
solve the multi-class image labeling problem for an image
by optimizing the semantic labels in a temporal window
around the image we are interested in. We then augment
the higher-order cliques of the CRF with the sets of pixels
that are projections of the same 3D point in different im-
ages. Since these new higher-order cliques contain different
projections of the same 3D point, the labels of the pixels in-
side the clique should be consistent. Therefore, it is natural
to form a grouping constraint on these pixels which takes
the form of a robust PN potential. In addition, we assign
a 3D unary potential for each of these higher-order nodes
that correspond to different 3D points. This 3D potential al-
lows us to incorporate class-specific information about the
possible label of the corresponding 3D point based on the
surrounding 3D geometry. Thus, the new energy formula-
tion takes the following form:

E(y) =
∑
i∈V

ψi(yi) +
∑

(i,j)∈E

ψij(yi, yj) (2)

+miny

∑
s∈S

ψs(ys) +
∑
p∈P

ψp(yp)

,
whereψs denotes the segment potential andψp is a potential
defined over the points of the 3D reconstruction and can in-
corporate the temporal consistency between frames, as well
as local 3D geometry information. Finally, the inference is
performed in the CRF using the standard α-expansion algo-
rithm [2, 1, 12].

In order to be able to temporally integrate the semantic
information over different frames but to also exploit the in-



formation coming from 3D scene geometry, we compute a
point cloud reconstruction of the environment. Our recon-
struction pipeline consists of 3 major components: visual
odometry, stereo depth estimation and 3D reconstruction.

Visual odometry. In order to fuse the individual dispar-
ity maps to a consistent 3D point cloud reconstruction, we
estimate the camera position and rotation P = (R, t) for
each frame using visual odometry (VO). For this, we use a
stereo VO pipeline, as proposed by Nister [20]. We main-
tain the uncertainty about the camera pose with a Kalman
filter, which also helps us smooth the VO calculations.

Stereo depth estimation. In this component we compute
the stereo disparity maps individually for each of the frames
of the sequence using the ELAS algorithm, as described in
[6]. ELAS provides high quality depth maps at a low com-
putational cost and it is thus suitable for our application.

3D reconstruction. In the last component of our pipeline,
we fuse the 3D points from the individual depth maps into
a common 3D reconstruction using the visual odometry in-
formation. In the first frame of the sequence, we create an
initial point cloud by generating a 3D point for each of the
image pixels for which we are given a valid disparity from
the stereo depth estimation. Each of the 3D points is as-
sociated with a zero-velocity Kalman filter that keeps track
of its localization uncertainty. The uncertainty covariance
of a reconstructed 3D point can be computed using forward
error propagation [10] as

C =

(
∂fb
∂u

)T
 σu 0 0

0 σv 0
0 0 σd

(∂fb
∂u

)
, (3)

where σu, σv and σd are the standard deviations in the two
image dimensions and in the disparity, respectively, and fb
represents the backprojection function

fb(u, v, d) =

 u
vsvu
fu

 B

d
. (4)

u and v are the pixel coordinates, fu is the focal length of
the camera in pixels, B is the baseline, d is the disparity,
and svu is the skew parameter of the camera. Once an ini-
tial point cloud has been created, we project its points into
each of the following frames after incorporating the esti-
mated camera motion. In this way, we create a virtual dis-
parity dv for each point, which is then compared with the
disparity computed from the stereo depth estimation mod-
ule d on this specific pixel. If |dv−d|

d is below a certain
threshold td, the 3D point is associated with this pixel and
its Kalman filter is updated according to the new measure-
ment. For all image pixels that we cannot associate with ex-
isting 3D points, we generate new 3D points that are added
to the point cloud. This results in a robust 3D integration for
static scene structures. For all further processing steps, we

Figure 4. Visualization of the 3D Features (a) Height (h) above
the estimated ground plane; (b) Point-ness (λ0); (c) Linear-ness
(λ0 − λ1); (d) Surface-ness (λ1 − λ2); (e) Cosines of the angles
between the normal and the tangent vectors to the horizontal plane;
(f) Dimensions of the oriented bounding box along the principal
components axes.

keep only those 3D points whose localization uncertainty
surpasses a threshold.

Temporal Consistency Potentials. The consistency po-
tentials take the form of robust PN potentials [12] and their
role is to force the labels of the pixels that correspond to the
same 3D point to have the same label. The new node that
is constructed is allowed to take a label from the same la-
bel set as the segment potentials. The idea behind this is to
collect the opinions of the pixels of different frames for the
same 3D point. Therefore, the consistency potential ψp(yp)
is defined as follows

ψp(yp) = min
l∈L

(γmax
p , γlp + klpN

l
p) , (5)

γlp = λs|p|min(
∑
i∈p

wciψi(yi) +K,α) (6)

γmax
p = |p|(λp + λsα), (7)

where α is a truncation threshold, K is a normalizing con-
stant, andN l

p =
∑

i∈p δ(yi 6= l) is the number of pixels dis-
agreeing with the majority vote. Finally, the parameter wci

weights the different frames’ contributions to the clique.

3D Potentials. The 3D potentials are an extension of the
consistency potentials. They enable us to integrate class-
specific information from the local geometry around each
of the 3D points. They take the following form:

ψp(yp) = min
l∈L

(γmax
p , γlp + klpN

l
p), (8)

γlp = λs|p|min

∑
i∈p

wciψi(yi) (9)

+wp3D
(−log(Hl(p))) +K,α

)
,

where Hl(p) is the response of a classifier which indicates
the probability for a 3D point clique to take a certain la-
bel. We use the output of a Randomized Decision Forests
classifier [8] to define the 3D potentials. Since we collect



the output of multiple trees, we assign the value of the po-
tential function for a specific class to be proportional to the
number of trees that have voted for this class. Often, the
amount of training data that we have is significantly biased
towards some of the classes. To alleviate this effect, we
randomly subsample the points of the different classes pro-
portionally to the class frequency in order to create a bal-
anced training set with regard to the different classes and
thus achieve an unbiased classification result [3]. We have
implemented a number of local geometric features that are
extracted from the 3D point cloud and are then fed into
the classifier. Firstly, we make use of the height of a 3D
point above the local ground plane (Fig. 4(a)), which is es-
timated during visual odometry computation. Secondly, we
compute the spectral (Fig. 4(b,c,d)) and directional features
(Fig. 4(e)) proposed by Munoz et al. [18], and finally we
compute the dimensions of the oriented bounding box that
encloses the neighborhood of each point in the three princi-
pal components space [19] (Fig. 4(f)). The resulting feature
vector consists of 8 dimensions in total and the computation
of the 3D features used the PCL library [22].

5. Experimental Results
Datasets. We evaluate our method on two datasets: the
LEUVEN stereo dataset [15] and the CITY stereo dataset [4].

The LEUVEN dataset was first used in [16]. It consists
of 1175 image pairs captured at 25fps with a resolution of
360x288 pixels over a driving distance of about 500m. Re-
cently, a subset of this dataset has been enriched with object
class segmentation annotations [15]. The augmented sub-
set contains 70 images divided into 50 training and 20 test
frames with a cropped resolution of 316x256. Each pixel is
manually labeled to one of the 8 class labels defined in [15].

The CITY dataset contains 3000 image pairs of high
quality 13 Hz footage at 640x480 pixel resolution. The
video was captured by a moving vehicle inside the city cen-
ter of Zurich. The CITY dataset is part of the ZURICH
corpus [4] of datasets which is divided into several subse-
quences captured at daylight and dusk. Ground truth labeled
frames are provided for sporadic images along the several
datasets. In addition, we have augmented the dataset with
30 segmentation annotations for the CITY sequence. This
resulted in a total of 71 ground truth images used for train-
ing and 32 for testing. The pixels in the annotated frames
take one of the 13 label classes defined in [4].

LEUVEN dataset. In a first quantitative experiment we
assess the improvement in performance our proposed po-
tentials bring. We compare a baseline system which imple-
ments a basic version of the energy formulation of Eq. 1 to
two versions of our proposed framework. In the first ver-
sion, only the temporal consistency potentials are added,
whereas in the second both the temporal consistency and the
3D potentials are included. Except where noted otherwise,

we use a temporal window of 5 frames, the different frames
contribute equally to the consistency potentials, the weight-
ing factors between the potentials arewci=0.7, wp3D

=0.3,
and a forest of 20 trees of depth up to 10 levels is used for
evaluating the 3D unary potentials.

As can be seen in Table 1, the introduction of the tem-
poral consistency potentials consistently improves perfor-
mance across all object classes and all evaluation measures.
In particular, the global recall is improved by 1.8% and the
average recall by 3.4%, showing the advantage of the pro-
posed approach. The 3D unary potentials bring an addi-
tional improvement in the global accuracy and for some of
the classes (e.g., building, sidewalk) using the recall mea-
sure, but they improve the results for almost all classes for
the IvsU measure. Note that the quality of the images in this
dataset is rather low and the corresponding 3D reconstruc-
tion therefore contains a high level of noise, which limits
the improvements the 3D potentials can bring here. All of
the above findings are also nicely illustrated in the confu-
sion matrices in Fig. 5 and in the perceived quality of the
segmentation images in Fig. 6.

In a second round of more in-depth experiments on this
dataset we evaluated how the size of the temporal window
around the image of interest affects segmentation perfor-
mance. We found that the performance is practically not
affected: a temporal window of 3 frames achieves a global
recall of 95.1%, in comparison to 95.2% for the 5- and
7-frames windows. We also assessed the achievable seg-
mentation performance when keeping the system causal
(i.e., when choosing the reference frame to be at the end
of the temporal window, such that no look-ahead into future
frames is used). Such a change results in a slight drop of
0.3% in global recall compared to the centered setting, but
it still constitutes a 1.5% improvement over the baseline.

Finally, we show a comparison to the recent approach
of [15] using their evaluation procedure, which discards the
person category (Tab. 1). The results are comparable, even
though [15] use a more complicated model (3 levels of hi-
erarchy and pairwise connections in all hierarchies).

CITY dataset. Since the Leuven dataset consists of low-
resolution images, the resulting depth maps and 3D re-
constructions are of poor quality, including a substantial
amount of noise. Therefore, we also evaluate our approach
on the CITY dataset, which has higher resolution images
leading to better 3D reconstructions. Again, we begin with
a comparison to the baseline system to assess the perfor-
mance improvement of the temporal consistency and the 3D
potentials. Except where noted otherwise, we use a tem-
poral window of 3 frames, the different frames contribute
equally to the consistency potentials, the weighting factors
between the potentials are wci=0.8, wp3D

=0.2, and a for-
est of 50 trees of depth up to 10 levels is used for evaluating
the 3D unary potentials.
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Figure 5. LEUVEN: Confusion matrices for different energy formulations. (a) Baseline. (b) Consistency potentials (c) Consistency
potentials and 3D unary potentials. As it can be seen the introduced potentials improve the performance consistently over the baseline
system. The low performance across all the systems on the person class can be explained by the fact that there are very few instances in
the test set and they are often heavily occluded. Furthermore, no object detections are used in this CRF formulation.

(a) (b) (c) (d) (e)

Figure 6. LEUVEN: Qualitative results (a) Test images; (b) ground truth labeled images; (c) segmentations obtained using the baseline
approach; (d) segmentations obtained using consistency potentials; (e) segmentations obtained using consistency potentials and 3D unary
potentials. The introduced potentials improve the image labeling quality significantly. (Best viewed in color)

As shown in Table 2, the consistency potentials improve
the global recall by 1.6% and the average recall by 2.4%.
The improvement is again consistent over all the classes
(except for the sign class), with significant improvements
for some classes. In particular for the mark class, there is
an increase of 13.2% in recall, which also becomes visible
in the qualitative results of Fig. 8. The 3D potentials im-
prove the summary scores of global and average for both
evaluation measures. It should be noted here that some of
the classes have a distinctive geometry and can therefore be
classified more easily (e.g., curb), whereas others have very
similar geometrical properties (e.g., mark and road). In ad-
dition, some of the object classes represent mobile objects
(e.g., car). For these classes the reconstruction becomes
difficult and often fails to recover the original object shape.
This can explain the slightly worse performance of the 3D
potentials for some of the classes. A more detailed overview
is available from the confusion matrices in Fig. 7. It should
also be noted that the wall and grass classes occur only very
rarely in the test images. We decided to keep them in our

result tables to be consistent with [4] and since they were
used for the training, but we think that they should be either
omitted (grass) or be merged with other classes (wall with
building) since those classes are almost indistinguishable.

Finally, we tried to compare our approach’s performance
to the one reported in [4]. Although a direct comparison to
[4] is impossible due to the diverging training and test sets,
it is interesting to observe that our approach improves both
on their reported summary performances (with 57.6% vs.
45.2% average recall) and on every single class except for
street markings and poles, where their results are 3% and
5% higher, respectively. As can also be observed in Fig 9,
our segmentation is far more detailed and accurate.

6. Conclusions and Future Work
We have presented a novel framework for enforcing tem-

poral consistency between consecutive videos frames in a
semantic segmentation application. Our proposed method
makes it possible to also incorporate semantic information
coming from local 3D geometric features in a single energy
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Recall
Baseline 95.4 96.9 84.7 0.0 96.3 47.3 50.8 93.0 67.4

Temp. Cons. 96.6 98.7 86.7 0.0 98.5 55.8 59.6 94.8 70.8
Temp. Cons. + 3D 97.8 97.1 85.4 0.0 98.4 56.1 59.3 95.2 70.6

Joint segmentation and depth [15] 96.7 99.8 94.0 - 98.9 60.6 59.5 95.8 84.9
Temp. Cons. + 3D 97.9 97.1 85.4 - 98.4 56.1 59.3 95.4 82.4

Intersections vs Union
Baseline 93.1 87.0 65.6 0.0 90.5 43.7 47.5 - 61.1

Temp. Cons. 94.8 90.6 75.0 0.0 92.5 51.4 55.9 - 65.7
Temp. Cons. + 3D 95.2 92.9 75.5 0.0 93.0 52.2 55.7 - 66.4

Table 1. LEUVEN: Quantitative results. The evaluation measures are defined in [14]. The two proposed formulations improve the perfor-
mance consistently for the individual classes and the overall scores. Note that there are very few person instances in the test set.

(a) (b) (c)

Figure 7. CITY: Confusion matrices for different energy formulations. (a) Baseline. (b) Consistency potentials (c) Consistency potentials
and 3D unary potentials. As can be seen, the introduced potentials improve the performance consistently over the baseline system. The
low performance on the wall and grass classes can be explained by the very few instances of those classes in the test set.

(a) (b) (c)
Figure 9. Comparison with [4]: (a) Test image. (b) Result from
[4]. (c) Our result. Our system achieves a much more detailed and
accurate labeling. (Best viewed in color)

minimization formulation. We have evaluated our approach
on two stereo sequences taken from mobile platforms. Our
results show that our method achieves improved segmenta-
tion performance compared to an image-only baseline and
that it generalizes well to varying image conditions.

In future work, we plan to investigate better 3D features
that are better adapted to the noisy stereo depth data. In ad-
dition, we will explore how class-specific information ob-
tained from the segmentations can be used to improve 3D
integration for the movable object categories.
Acknowledgements. This project has been funded, in parts, by
the EU project EUROPA (ICT-2008-231888) and the cluster of excellence
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