
Efficient clustering and matching
for object class recognition

Bastian Leibe
ETH Zurich

Zurich, Switzerland

Krystian Mikolajczyk
University of Surrey

Guildford, UK

Bernt Schiele
TU Darmstadt

Darmstadt, Germany

Abstract

In this paper we address the problem of building object classrepresentations
based on local features and fast matching in a large database. We propose
an efficient algorithm for hierarchical agglomerative clustering. We examine
different agglomerative and partitional clustering strategies and compare the
quality of obtained clusters. Our combination of partitional-agglomerative
clustering gives significant improvement in terms of efficiency while main-
taining the same quality of clusters. We also propose a method for building
data structures for fast matching in high dimensional feature spaces. These
improvements allow to deal with large sets of training data typically used in
recognition of multiple object classes.

1 Introduction
Many of todays models and approaches for object class recognition are based on local fea-
tures. Local features are typically extracted from images and subsequently grouped into
appearance clusters [1, 12, 23]. Besides reducing the size of the feature space, appear-
ance clusters allow to capture a larger variability of localimage structure than individual
features, as well as to focus on parts which re-occur on many instances of the object class
and consequently generalize over new instances. While appearance clusters seem to be
an essential component of several successful approaches, they have been applied only to
a relatively small number of object classes using small training and test sets. A typical
feature detector might extract 10s-100s of features per image. Learning models for 100s
of object classes using 10s or even 100s of images per class would imply that the approach
has to deal with 100,000s to 1,000,000s of features during training. This number is but a
conservative estimate, since we might want to scale to many more object classes or use far
more images in the context of unsupervised learning or topicdiscovery [24]. It is however
unclear if and how approaches based on appearance clusters can deal with such massive
amounts of high-dimensional data.

In general, clustering is a powerful tool for finding structure in large data sets [10].
However, the question what is a good clustering method cannot be answered without the
context of a task. Our main interest is the use of clustering for object class recognition
using local-feature based approaches. When using appearance clusters for building object
models we can differentiate three aspects: 1)clusteringto obtain the appearance clusters,
2) matchingduring training and recognition, and 3) therecognitionmethod. In this paper
we focus on the first two aspects, namelyclusteringandmatching.

In computer vision, frequently used clustering strategiesare k-means [23, 26] and ag-
glomerative clustering [1, 12, 17]. Other methods like MeanShift [6] also become more
and more popular. However, their performance has not been compared for computer vi-
sion tasks, and no guidelines are available for judging the tradeoffs in representational

capacity, accuracy, and run-time. K-means is frequently used because of its computa-
tional simplicity. However, the clustering solution is suboptimal when the number of
outliers in the point distribution is large. Moreover, the solution depends on an arbitrar-
ily set number of clusters and random initialization, whichmakes it less attractive for
object categorization. In the agglomerative clustering scheme the number of clusters is
automatically determined. However, both the runtime and memory requirements are of-
ten significantly higher for agglomerative methods. Given the large amounts of data that
need to be processed, an efficient implementation of the clustering algorithm is therefore
crucial for its applicability.

The second important aspect is to efficiently match featuresto appearance clusters.
Numerous methods have been proposed for efficient search [3,19]. In high-dimensional
spaces, however, these methods are no longer effective. Many methods therefore use
approximate nearest-neighbor search techniques [2, 9, 14]. In object recognition and
categorization, however, we are interested in matches within a similarity distance to a
feature point. This type of volume search is much harder to doefficiently. In contrast to
k-means clustering, the result of agglomerative clustering can be used directly to obtain
a data structure for efficient volume search, namely a ball-tree [20]. In experiments we
observe speedup factors of 20- 200 for matching through the use of this technique.

In this paper we introduce several improvements to agglomerative clustering (Sec. 3),
making it tractable for large data sets while preserving cluster quality. We use the cluster-
ing results to build a data structure for efficient volume search in high-dimensional spaces
(Sec. 4). In the experiments we show significant speedup factors for matching and we
also compare the performance of k-means and the agglomerative scheme, both in terms
of computational cost and recognition performance (Sec. 5).

2 Recognition approach
We briefly describe two main stages of a recognition algorithm which are similar in many
state-of-the art approaches [1, 12, 17]. While there exist differences between the indi-
vidual approaches, the following describes an object classrepresentation and a matching
procedure which may be seen as a common basis of many approaches.

Object representation. In our approach clustering is used to build an appearance model
in which each cluster is represented by its center. For each cluster, an occurrence distri-
bution is computed, specifying where and at which scales thelocal appearance occurs on
the objects. The location distribution significantly increases the discriminative power of
the representation and it allows to localize the object within the image.

Matching. The next stage of many recognition methods is matching. Given a query im-
age, features are detected and matched to the object model represented by the appearance
clusters. Typically, this stage involves a distance measure, a similarity threshold, and a
search technique. The distance measure and similarity threshold depend on the feature
descriptor at hand. A fast search method is necessary if the object representation con-
tains a large number of clusters. The clusters that match to query features cast votes for
possible object identities, locations, and scales based onthe learned location distribution.
Finally, local maxima are searched in multi-dimensional voting spaces. Additional stages
can be applied to refine the hypotheses and improve detectionprecision [12].

3 Clustering methods
In this section, we present an efficient method for clustering large numbers of features. We
discuss two main clustering techniques, namely partitional K-means and agglomerative
method. We propose an efficient algorithm for the latter and introduce a multi-stage
procedure combining the benefits of both techniques.

K-means. The k-means algorithm [15] is one of the simplest and most popular cluster-
ing methods. It is initialized randomly byk seed points for the clusters. In all following
iterations, each data point is assigned to the closest cluster center, where the centers are
computed as the means of associated data points. In practice, this process converges to
a local optimum within a few iterations. Many approaches employ k-means because of
its computational simplicity, which is convenient for large data sets [23, 26]. Its time
complexity isO(Nkℓd) when clusteringN data points ofd dimensions withk centers and
ℓ iterations. However, the complexity is high whenk is comparable withN. It can be
improved by using kd-trees [22] or triangular inequality [8]. K-means is often initialized
randomly, which may result in different clustering solution from run to run. Several meth-
ods [21] were proposed to overcome this problem but they add computational overhead
to k-means. Finally, there is no guarantee that the obtainedclusters are visually com-
pact. Because of the fixed value ofk, some cluster centers may lie in-between several real
clusters, so that the centers are not representative.

Agglomerative clustering. Agglomerative clustering builds the solution by initiallyas-
signing each point to its own cluster and then repeatedly selecting and merging pairs of
clusters. Thus, it builds a hierarchical merging tree from the bottom (leaves) towards the
top (root). The key parameter here is the criterion used for selecting clusters to be merged.
We focus on the Group Average criterion (UPGMA in [11]), which measures the similar-
ity of two candidate clusters as the average pairwise similarity between their members.
Thus, the average-link criterion allows to specify the sizeor compactness of the resulting
clusters. This property is very useful in building compact appearance clusters and makes
the algorithm robust to outliers. A similarity threshold that produces visually compact
clusters only depends on the employed feature descriptors,thus can be estimated experi-
mentally and used on different data sets. Another advantageof agglomerative methods is
that given the clustering trace from a full hierarchical clustering, i.e. the indices of clus-
ters merged in every step and the similarities between them,we can rebuild the clusters
for a different similarity threshold at almost no computational cost.

The main drawback of the standard average-link algorithm isits O(N2 logN) run-time
andO(N2) space complexity. This comes from the requirement that clusters should be
merged in decreasing order of similarity and that the distances must be recomputed after
each agglomeration. In order to make agglomerative clustering applicable to large data
sets, both complexities have to be reduced. The improvementproposed here is based on
the insight from [4] that for some criteria the same clustering solution can be achieved
with different merging order. Furthermore, the similarities between clusters can be effi-
ciently recomputed based only on the centers and variances.

RNN algorithm. The improved clustering method is based on the constructionof re-
ciprocal nearest neighborpairs (RNN pairs), that is of pairs of pointsa andb, such that
a is b’s nearest neighbor and vice versa [4]. RNN is applicable to clustering criteria that
fulfill reducibility property[5] :

d(ci ,c j)≤ inf(d(ci ,ck),d(c j ,ck))⇒ inf(d(ci ,ck),d(c j ,ck))≤ d(ci ∪c j ,ck)

Algorithm 1 Average-Link algorithm with RNNs forRpoints.
last←−1
while R 6= /0 do

if last < 0 then // Initialize a new chain with a random point v∈R.
last← 0; Chain[last]← v∈R; R← R\{v}; Sim[last]← 0; (1)

s← findNearestNeighbor(Chain[last], R); sm← sim(Chain[last],s) (2)
if sm> Sim[last] then // No RNNs, add s to the chain.

last← last+1; Chain[last]← s; R← R\{s}; Sim[last]← sm; (3)
else // Found RNNs→ agglomerate the last two points in the chain

if Sim[last] > SimThresholdthen
s← agglomerate(Chain[last],Chain[last−1]); R← R∪{s}; last← last−2; (4)

elselast←−1 // Discard the current chain.

whereci ,c j andck are clusters andd(c j ,ck) is a distance measure. This property effec-
tively states that the agglomeration of a RNN pair does not alter the nearest-neighbor
relations of other clusters. It is fulfilled for the average-link criterion regardless of the
employed similarity measure. The key to an efficient implementation is therefore to en-
sure that RNNs can be found with as little computation as possible. This can be achieved
by building anearest-neighbor chain[4]. An NN-chain consists of an arbitrary point,
followed by its NN, which is again followed by its NN from among the remaining points,
and so on. Thus, each NN-chain ends with an RNN pair. The strategy of the algorithm is
thus to start with an arbitrary point (Alg. 1, step (1)) and build up an NN-chain (2,3). As
soon as an RNN pair is found, the corresponding clusters can be agglomerated (4). The
reducibility property guarantees that after the last two clusters from the chain are merged,
the NN assignments stay valid for the remaining chain members, which can then be used
in the next iteration. Whenever the current chain is empty, anew chain is started with
another random point (1). When a new cluster is created by merging an RNN pair, its
new distance to other clusters has to be recomputed. Insteadof expensively computing
the average of all distances between cluster members, we usethe following equivalence:

simEuclid(cx,cy) =
1

NM

N

∑
i=1

M

∑
j=1

(x(i)−y(j))2 = σ2
x + σ2

y +(µx− µy)
2

wherex andy are the cluster members,µx andµy are the centroids,σ2
x andσ2

y are the
variances. Both the mean and variance of the new cluster can then be computed incre-
mentally:

µnew=
Nµx +Mµy

N+M
, σ2

new=
1

N+M

(

Nσ2
x +Mσ2

y +
NM

N+M
(µx− µy)

2
)

An amortized analysis shows that this algorithm has a computational complexity ofO(N2d)
with only linear space requirements. This is an important improvement compared to the
standard algorithm, since it makes it possible to cluster 100,000s of data points, which
was not feasible before. However, the time complexity is still high whenN is large. In
the following, we present a strategy to further improve alsothe run-time efficiency.

Combined partitional-agglomerative algorithm (CPA). The idea of this improved
algorithm is to first partition the set of features and perform agglomerative clustering
within each partition independently [27]. However, there are several issues with this
method. The first is how to set the partitions so that they contain features that cluster
well. A possible solution is to use a natural partition of thedata points, stemming from
properties of the employed interest point detector. The scale invariant interest points are

detected at local maxima and minima of the Laplacian [13, 16]. If e.g. SIFT descriptors
are used, which make a clear distinction between bright and dark structures, these extrema
form two distinct groups which do not intersect. For other descriptors, this property has
to be verified. Anothers suitable partitioning method is k-means. The number of initial
partitions has to be small, otherwise k-means is not efficient. A problem occurs if a real
cluster is split over several partitions, since the agglomeration is initially done between
points which are NNs within one partition only. This can alter the cluster centers and
variances and thus produce a different clustering tree. To reduce the impact of this effect
on the final clustering solution, we agglomerate clusters within each partition only up to
a certain similarity threshold. Next, given the cluster centers and variances obtained from
all partitions, we continue the agglomeration up to the rootof the tree. If the similarity
threshold for initial clustering is smaller than for the final appearance clusters, then the
initial agglomeration provides small building blocks usedby the next level. However, the
initial threshold should produce a number of clusters whichis significantly lower than N,
otherwise the complexity reduction would be limited.

To summarize the approach, we first partition features on twosets of Laplacian max-
ima and minima. Then we apply k-means to each set to further partition the features. Ag-
glomerative clustering is applied within each partition. Finally, the agglomerative method
is applied once more on all the cluster centers computed in the previous step. This com-
bined partitional-agglomerative method leads to an approximate clustering solution, but
as the experimental results show, the difference from the exact solution is negligible.

4 Fast matching
In this section, we propose a data structure for fast search in high dimensional feature
spaces. Many fast NN search methods are based on hypercube orhyperrectangle ap-
proximations [2, 19]. They partition each feature dimension independently and trim the
candidates for NN dimension by dimension. However, in this approach the efficiency de-
pends critically on the size of the hypercube. It also relieson the fact that a single NN
is searched in the whole space, for which theLinf (hypercube) norm can be used. How-
ever, in object class recognition we are often interested infinding all features which are
similar to our query point, for which theL2 (hypersphere) norm is needed. AlthoughL2

is bounded byLinf , in high-dimensional spaces the corners of the hypercube contain far
more volume (data points) than the inscribed hypersphere. Asolution to this problem is
a data structure based on theL2 norm. We describe a fast data structure and an algorithm
for range search based only on a triangle-inequality-obeying distance metric.

4.1 Ball tree search
Ball tree structure. A ball tree (or metric tree) is a hierarchical structure for represent-
ing a set of points with the only assumption that the distancefunction between points is
a metric [25]. Each node(a...r) of the tree is represented by two parameters: center and
radius (Fig. 1(a)). The node center is a mean vector of all thechildren nodes, and the
radius is determined by the point farthest from the center. The radius can also be smaller
if we are ready to accept a subset of the points similar to the query in return for a possible
speedup. We propose to set the radius as a quantile of orderedfeature distances from the
node center.

Building ball trees. The problem of building an optimal ball tree structure is inherently
similar to that of agglomerative clustering [18, 20]. In theagglomerative tree each node

ehg

v
v

3
Sim

2
Sim

1
Sim

a
b

d e

f g

h

i

k

m

n

p
q

r

c

l

(a) (b)

f

l m n p

a

d c

ta

(c)

l m n p

d f c

a

k ir

b
q

eg

k ir

b

h

tb

te

1
v v v v v v v

2 3 4 5 6 7
v

8
................

Figure 1: (a) Ball tree data structure. (b) Corresponding ball-tree. (c) Agglomerative tree.

contains two child nodes, since the algorithm merges two clusters at a time. However,
given the clustering trace which contains the indices of merged clusters and their sim-
ilarities, we can easily reconstruct a tree in which the number of children of a node is
determined as a function of their similarity. This is illustrated in Fig. 1(b,c). Intermediate
nodesta,tb andte are merged with correspondinga,b ande. The size of the nodes is
increasing from the leaves to the root of the tree. Thus we obtain a ball-tree structure
from the agglomerative clustering trace with minimal additional cost.

Ball-tree search. A range search is a simple recursive procedure, which is illustrated
in Figs. 1(a) and 1(b). We start by computing the similarity of a query pointq to the top
nodesa andb and use the triangle inequality property. The search is continued if the
distance to the node center minus the nodes radius is less than the query radius, i.e. if the
query ball intersects with the node ball. The search is continued further to all children
nodes that intersect with the query ball. Exhaustive searchis applied within each node.
The speed of the search thus depends on the number of tree levels, the node radii, and the
query radius. The number of levels and the node radii can be chosen experimentally at a
low cost using the precomputed clustering trace. If we are only interested in the NNs, the
search can be made more efficient, since the search radius canbe progressively reduced
with each new NN candidate that is found.

5 Experiments
In this section we present and discuss the evaluation results.

5.1 Test Data
Our test data consists of 1,000,000 scale invariant features provided by Harris-Laplace
and Hessian-Laplace detectors [16] with SIFT descriptor [13]. Features are detected in
5,000 images from the Caltech database and the PASCAL set1, containing pedestrians,
cars, motorbikes, faces, and cows. To validate the results,we also compare the recog-
nition performance of the baseline approach using the proposed clustering and matching
methods and the UIUC multi-scale car set [1]. Additional experiments on more object
classes can be found in [17].

5.2 Clustering
Similarity measure. As described in Section 3, the agglomerative clustering method
is driven by the similarity measure and a threshold. To produce meaningful clusters we
determine a reasonable range for the similarity distance using the evaluation protocol
from [16], originally developed for matching pairs of images. It computes precision (i.e.
the ratio of correct to false matches) and recall of matches with respect to the similarity
threshold. Precision is high up to a given similarity threshold and decreases for larger

1http://www.pascal-network.org/challenges/VOC/

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity threshold

pr
ec

is
io

n

d=128

d=36

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

#features

ru
n

tim
e

(s
ec

)

kmeans

agg_rnn

kmeans_agg_rnn

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

#clusters

ru
n

tim
e

(s
ec

.)

agg_rnn
kmeans
kmeans_agg_rnn

Figure 2: (a) Matching precision vs. similarity distance. (b) Run-time vs. number of
features. (c) Run time vs. number of clusters.

thresholds (cf. Fig. 2(a)). The useful thresholds are in thesteep part of the curve. For
small thresholds, only very similar features match, resulting in a poor generalization of
the model to new object instances. For large thresholds, false matches dominate, thus the
recognition performance is low and the complexity increases. The above method provides
a reliable and computationally inexpensive insight on the similarity thresholds that can
be used for agglomerative clustering. In contrast, the sizeand distribution of k-means
clusters depend on thek parameter, which is difficult to optimize if the real distribution of
features is unknown.

Run-time. Given a set of features, we first run the RNN method with a fixed similarity
threshold obtained from Fig. 2(a), which results in a numberof clusters. We then run
standard k-means for the same number of clusters with the maximum number of iterations
set to 25. Finally, we run the CPA method with initial number of k-means partitions set
to #f eatures/20000, and the initial agglomerative threshold set to half the one obtained
from Fig. 2(a). Thus the methods are compared for the same number of features and the
same number of clusters. Fig. 2(b) shows the run-time with respect to the number of
features in the database. The run-time of CPA is an order of magnitude lower than for k-
means and 2 orders of magnitude lower than the RNN algorithm.For example, clustering
of 1M features takes 555h for RNN2, 41h for k-means, and 5h for CPA.

Fig. 2(c) shows the run-time with respect to the number of resulting clusters, using
200k features. For k-means, the run time increases linearlywith k. This is to be expected
since the complexity is directly related to the number of clusters if the exhaustive search
is used during clustering. However, it is important to note that this is the upper bound,
since the run time can be shorter if convergence is obtained in less iterations,k≈ N, fast
NN search techniques [22], or other speedups [8] are used. The run-time of the RNN is
high but almost independent of the number of clusters, sincemost of the computation is
spent at the bottom of the clustering tree, when the number ofclusters is still large. For
a large number of clusters, the run-time for k-means exceedsthe one for RNN. From our
experience, the compression ratio #f eatures/#clusterswhich gives the best recognition
performance is in the range, where the proposed CPA method outperforms k-means.

Cluster quality. Fig 3(a) displays the average intra-class variance of clusters obtained
with the three methods. The results are reported with respect to the number of features,
and using the same number of clusters as in Fig. 2(b). Single-member clusters were dis-
carded from this experiment in order not to bias the results.The diagram shows that the
variance of clusters obtained for both agglomerative methods is lower than for k-means

2The run-times for RNN agglomerative clustering in the rangeof 500,000-1,000,000 points are estimated
since we were not able to run the clustering due to time constraints.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.5

1

1.5

#features

av
er

ag
e

cl
us

te
r

va
ria

nc
e

(x
10

6)

agg_rnn
kmeans
kmeans_agg_rnn

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

50

100

150

200

250

300

350

400

450

500

#clusters

#m
at

ch
ed

 c
lu

st
er

s
pe

r
fe

at
ur

e

kmeans
agg_rnn
kmeans_agg_rnn

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#clusters

m
at

ch
ed

 c
lu

st
er

s
m

em
be

rs
 %

kmeans
agg_rnn
kmeans_agg_rnn

Figure 3: (a) Average variance of clusters. (b) Average number of matched clusters per
feature. (c) Average percentage of matched features per matched cluster.

clusters. The variances for RNN and CPA are nearly the same. To compare the distribu-
tion of cluster centers and the compactness of the clusters,we carried out an additional
experiment. We count the number of cluster centers which arewithin a given similarity
radius of a query point (cf. Fig. 3(b)). For k-means, the number of matched clusters per
query feature is significantly larger than for RNN and CPA. InFig. 3(c) we measure how
many cluster members do indeed match to the query feature. The percentage of matched
cluster members is higher for agglomerated clusters. Together, these results show that the
k-means clusters are less compact and therefore match to more features compared to ag-
glomerated clusters, and that k-means cluster centers are less representative for the cluster
members.

5.3 Matching
In this section we compare the efficiency of the ball tree algorithm to exhaustive search.
We report the speedup factor as the ratio of run-times for 1,000 random queries. The effi-
ciency depends on several parameters: the number of features in the dataset, the number
of tree levels, the node radii, and the query radius. We have chosen experimentally 10
levels between the size of the appearance clusters (bottom nodes) and the size of the top
node. The impact of the other parameters on the speedup is investigated in the following
experiments. We use 200k of 128 dimensional descriptors and200k of 36 dimensional
descriptors obtained with PCA. To show the results for different numbers of features, we
also use a set of 50k points with 128-dim. descriptors.

Fig. 4(a) shows the speedup factor with respect to the fraction of lost matches. We
vary the radius of the nodes and compare the efficiency and thereturned matches with
exhaustive search. If we are looking for the exact matches, the ball tree is nearly 80 times
faster than exhaustive search (for 200k features of 128 dim). This factor significantly in-
creases up to 200 with 20% of lost matches3. The gain is smaller for the dataset of 50k
points and for low dimensional features, which indicates that we can expect further im-
provement with increasing number of features and dimensions. Fig. 4(b) shows the results
for different query radii (as a fraction of the top node size). The efficiency significantly
drops as the size of the query increases, since many more nodes have to be examined. In
most of our recognition experiments, the root node radius was 10 times larger than the
size of the appearance clusters. Thus, the useful query radius is in the range of 0.1-0.2.

5.4 Recognition performance.
Finally, we compare the recognition performance of object class representations obtained
with the different clustering methods. We use the UIUC multi-scale car database and

3While it is difficult to make a general claim how many lost matches are acceptable we experimentally
observed that we can accept 10% and more lost matches withoutany loss in recognition performance

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200

sp
ee

du
p

fa
ct

or

lost matches %

d=36, f=200000
d=128, f=50000
d=128, f=200000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

200

query radius / root radius

sp
ee

du
p

fa
ct

or

d=36, f=200000
d=128, f=50000
d=128, f=200000

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100
UIUC multi−scale EER performance (mdl)

#clusters

E
E

R
 P

er
fo

rm
an

ce
 (

%
)

kmeans
kmeans + mdl
agg_rnn
agg_rnn + mdl

Figure 4: (a) Ball-tree speedup factor vs. number of lost matches. (b) Ball-tree speedup
factor vs. query radius. (c) Recognition performance.

the evaluation criteria from [1]. We learn object representations on a training set of 50
car images from the PASCAL collection (cf. Sec. 5.1), from which we extract a total of
10,351 features with 36 dimensions. We use the evaluation criteria from [1] based on the
overlap of ground truth and detected bounding boxes.

Fig. 4(c) shows precision-recall performance at the equal error rate (EER) as a func-
tion of the the number of clusters for both k-means and the agglomerative method. The
solid curves depict the performance when the simple recognition approach is used (cf.
Sec. 2); this performance can then still be improved by applying the MDL verifica-
tion [12], as shown by the dashed curves. We make three observations. First, the recog-
nition score is higher for agglomerated clusters (EER: 78.4%) than for k-means (EER:
68%). The methods reach different performance levels initially, but can both be taken to
approximately the same performance (EERs: 96.4% and 92.1%)by the verification stage.
Second, for both clustering schemes the performances degrade gracefully for different
number of clusters, which is a result of our soft matching within a search hypersphere.
Third, since the cost of the soft matching increases with thenumber of clusters that fall
inside the search radius and k-means does in fact produces many more such matches for
the same number of clusters (see Fig. 3(b)) we conclude that agglomerative clustering is
preferable to k-means in terms of recognition costs.

Conclusions
Many of todays object class recognition approaches use clustering and matching of local
features to build object models. While k-means is the most popular method, this paper
shows that agglomerative clustering has several inherent properties that make it highly at-
tractive for object class recognition: first, matching can be done efficiently using ball-tree
search in high-dimensional spaces and with large numbers ofclusters; second the clusters
reflect the distribution of features resulting in fewer matches and lower complexity; and
third, recognition performance is often better than for k-means clusters.

This paper introduces various improvements of agglomerative clustering in the con-
text of processing large numbers of high-dimensional features. In addition, it shows how
to use the clustering result to build a data structure for efficient matching. These improve-
ments result not only in a practically feasible and efficientclustering scheme (we report
clustering results up to 1,000,000 features), but also in significant speedups for matching
(up to 200 times faster). Last but not least, the proposed algorithms and the expected
improvements are experimentally validated.

Acknowledgments. This work has been funded, in part, by the EU project CoSy (IST-2002-
004250).

References
[1] S. Agarwal, A. Awan, and D. Roth, Learning to detect objects in images via a sparse, part-

based representation.PAMI, 26(11):1475–1490, 2004.
[2] J. Beis and D. Lowe, Shape Indexing Using Approximate Nearest-Neighbour Search in High-

Dimensional Spaces. InCVPR, pages 1000–1006, 1997.
[3] J.L. Bentley, Multidimensional binary search trees used for associative searching. InCommu-

nications of the ACM, 18(9):509–517, 1975.
[4] J.P. Benzécri, Construction d’une Classification Ascendante Hiérarchique par la Recherche

en Chaı̂ne des Voisins Réciproques.CAD, 7(2):209–218, 1982.
[5] M. Bruynooghe, Méthodes Nouvelles en Classification Automatique des Données Taxi-

nomiques Nombreuses.Statistique et Analyse des Données, 3:24–42, 1977.
[6] D. Comaniciu and P Meer, Mean Shift: A Robust Approach toward Feature Space Analysis

PAMI, 24(5):603–619, 2002.
[7] W.H.E. Day and H. Edelsbrunner, Efficient Algorithms ForAgglomerative Hierarchical Clus-

tering Methods.Journal of Classification, 1:7–24, 1984.
[8] C. Elkan, Using the Triangle Inequality to Accelerate KMeans In ICML, pages 147-153,

2003.
[9] P. Indyk, R. Motwani, Approximate Nearest Neighbors: Towards Removing the Curse of

Dimensionality. InSTOC, pages 604–613, 1998.
[10] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, 1988
[11] G.N. Lance and W.T. Williams, A General Theory of Classificatory Sorting Strategies: II.

Clustering Systems.Computer Journal,10:271–277, 1967.
[12] B. Leibe, E. Seemann, and B. Schiele, Pedestrian detection in crowded scenes. InCVPR,

pages 878–885, 2005.
[13] D. Lowe, Distinctive image features from scale-invariant keypoints. IJCV, 2(60):91–110,

2004.
[14] T. Liu, A. Moore, A. Gray, and K. Yang, An Investigation of Practical Approximate Nearest

Neighbor Algorithms. InNIPS, pages 825–832, 2004.
[15] J. MacQueen, Some Methods for Classification and Analysis of Multivariate Observations. In

Symp. on Math. Statistics and Probability, pages 281–297, 1967.
[16] K. Mikolajczyk and C. Schmid, A performance evaluationof local descriptors. PAMI,

27(10):1615–1630, 2005.
[17] K. Mikolajczyk, B. Leibe and B. Schiele, Multiple Object Class Detection with a Generative

Model. CVPR, 2006.
[18] A.W. Moore, The Anchors Hierarchy: Using the Triangle Inequality to Survive High Dimen-

sional Data. InUAI, AAAI Press, pages 397–405, 2000.
[19] S. Nene, S. Nayar, A Simple Algorithm for Nearest Neighbor Search in High Dimensions.

PAMI, 19(9):989–1003, 1997.
[20] S.M. Omohundro, Five balltree construction algorithms. Technical Report TR-89-063, 1989.
[21] K. Popat and R.W. Picard, Cluster-Based Probability Model and Its Application to Image and

Texture Processing.TIP, 1997.
[22] V. Ramasubramanian and K.K. Paliwal, A Generalized optimization of the k-d tree for fast

nearest neighbour search.TENCON, pages 565-568, 1989.
[23] J. Sivic and A. Zisserman, Video google: A text retrieval approach to object matching in

videos. InICCV. pages 1470–1478, 2003.
[24] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman, Discovering object categories

in image collections. InICCV, 2005.
[25] J.K. Uhlmann, Satisfying general proximity/similarity queries with metric trees. InInforma-

tion Processing Letters, 40, pages 175–179, 1991.
[26] M. Weber, M. Welling, and P. Perona, Unsupervised Learning of Models for Recognition. In

ECCV, pages 628-0641, 2000.
[27] Y. Zhao and G. Karypis, Evaluation of hierarchical clustering algorithms for document

datasets. InCIKM, pages 515–524, 2002.

