Efficient clustering and matching
for object class recognition

Bastian Leibe Krystian Mikolajczyk Bernt Schiele
ETH Zurich University of Surrey TU Darmstadt
Zurich, Switzerland Guildford, UK Darmstadt, Germany

Abstract

In this paper we address the problem of building object dlegeesentations
based on local features and fast matching in a large datalgseropose
an efficient algorithm for hierarchical agglomerative tdugrg. We examine
different agglomerative and partitional clustering stggés and compare the
quality of obtained clusters. Our combination of partiabagglomerative
clustering gives significant improvement in terms of efficg while main-
taining the same quality of clusters. We also propose a nidttrabuilding
data structures for fast matching in high dimensional feaspaces. These
improvements allow to deal with large sets of training dgfadally used in
recognition of multiple object classes.

1 Introduction

Many of todays models and approaches for object class rétmgare based on local fea-
tures. Local features are typically extracted from imagessubsequently grouped into
appearance clusters [1, 12, 23]. Besides reducing the ithee deature space, appear-
ance clusters allow to capture a larger variability of laocahge structure than individual
features, as well as to focus on parts which re-occur on mratgiices of the object class
and consequently generalize over new instances. Whileaappee clusters seem to be
an essential component of several successful approablegdhave been applied only to
a relatively small number of object classes using smalhingi and test sets. A typical
feature detector might extract 10s-100s of features pegémbearning models for 100s
of object classes using 10s or even 100s of images per clagd imply that the approach
has to deal with 100,000s to 1,000,000s of features duraigitrg. This number is but a
conservative estimate, since we might want to scale to mamg object classes or use far
more images in the context of unsupervised learning or tigmovery [24]. It is however
unclear if and how approaches based on appearance clustedeal with such massive
amounts of high-dimensional data.

In general, clustering is a powerful tool for finding struetun large data sets [10].
However, the question what is a good clustering method damanswered without the
context of a task. Our main interest is the use of clusterangbject class recognition
using local-feature based approaches. When using appeatiasters for building object
models we can differentiate three aspectsla¥teringto obtain the appearance clusters,
2) matchingduring training and recognition, and 3) thecognitionmethod. In this paper
we focus on the first two aspects, namellysteringandmatching

In computer vision, frequently used clustering strategiesk-means [23, 26] and ag-
glomerative clustering [1, 12, 17]. Other methods like M&ift [6] also become more
and more popular. However, their performance has not bempaed for computer vi-
sion tasks, and no guidelines are available for judging thdebffs in representational



capacity, accuracy, and run-time. K-means is frequenthdusecause of its computa-
tional simplicity. However, the clustering solution is syimal when the number of

outliers in the point distribution is large. Moreover, th@wgion depends on an arbitrar-
ily set number of clusters and random initialization, whiolakes it less attractive for
object categorization. In the agglomerative clusteringesee the number of clusters is
automatically determined. However, both the runtime andhory requirements are of-

ten significantly higher for agglomerative methods. Givea large amounts of data that
need to be processed, an efficient implementation of theéerlng algorithm is therefore

crucial for its applicability.

The second important aspect is to efficiently match feattoegppearance clusters.
Numerous methods have been proposed for efficient sear@®].3In high-dimensional
spaces, however, these methods are no longer effective.y Mathods therefore use
approximate nearest-neighbor search techniques [2, 9, Mpbject recognition and
categorization, however, we are interested in matchesmwdhsimilarity distance to a
feature point. This type of volume search is much harder teffidiently. In contrast to
k-means clustering, the result of agglomerative clustecan be used directly to obtain
a data structure for efficient volume search, namely a badl-f20]. In experiments we
observe speedup factors of 20- 200 for matching throughdbefithis technique.

In this paper we introduce several improvements to agglativerclustering (Sec. 3),
making it tractable for large data sets while preservingteluquality. We use the cluster-
ing results to build a data structure for efficient volumerskan high-dimensional spaces
(Sec. 4). In the experiments we show significant speedupraébr matching and we
also compare the performance of k-means and the aggloneesatieme, both in terms
of computational cost and recognition performance (Sec. 5)

2 Recognition approach

We briefly describe two main stages of a recognition algoritthich are similar in many
state-of-the art approaches [1, 12, 17]. While there exfigrdnces between the indi-
vidual approaches, the following describes an object clysesentation and a matching
procedure which may be seen as a common basis of many appsoach

Object representation. In our approach clustering is used to build an appearanceimod
in which each cluster is represented by its center. For elaster, an occurrence distri-
bution is computed, specifying where and at which scaletoited appearance occurs on
the objects. The location distribution significantly ineses the discriminative power of
the representation and it allows to localize the objectiwithe image.

Matching. The next stage of many recognition methods is matching.rGavguery im-
age, features are detected and matched to the object mpdesemted by the appearance
clusters. Typically, this stage involves a distance megsausimilarity threshold, and a
search technique. The distance measure and similaritghtblg depend on the feature
descriptor at hand. A fast search method is necessary iflijeetorepresentation con-
tains a large number of clusters. The clusters that matchieoyifeatures cast votes for
possible object identities, locations, and scales bas¢deolearned location distribution.
Finally, local maxima are searched in multi-dimensionadgingspaces. Additional stages
can be applied to refine the hypotheses and improve detquigmision [12].



3 Clustering methods

In this section, we present an efficient method for clustgldnge numbers of features. We
discuss two main clustering techniques, namely partiti&hmeans and agglomerative
method. We propose an efficient algorithm for the latter antcbduce a multi-stage

procedure combining the benefits of both techniques.

K-means. The k-means algorithm [15] is one of the simplest and mostfargluster-
ing methods. It is initialized randomly by seed points for the clusters. In all following
iterations, each data point is assigned to the closesteclasnter, where the centers are
computed as the means of associated data points. In pratiicgrocess converges to
a local optimum within a few iterations. Many approaches leymwg-means because of
its computational simplicity, which is convenient for largata sets [23, 26]. Its time
complexity isO(Nk¢d) when clusterindN data points ofl dimensions wittk centers and

¢ iterations. However, the complexity is high whkris comparable witiN. It can be
improved by using kd-trees [22] or triangular inequality. [R-means is often initialized
randomly, which may result in different clustering solutfoom run to run. Several meth-
ods [21] were proposed to overcome this problem but they adtpatational overhead
to k-means. Finally, there is no guarantee that the obtathesters are visually com-
pact. Because of the fixed valuelgfsome cluster centers may lie in-between several real
clusters, so that the centers are not representative.

Agglomerative clustering. Agglomerative clustering builds the solution by initialg-
signing each point to its own cluster and then repeatedbcsaly and merging pairs of
clusters. Thus, it builds a hierarchical merging tree fromtottom (leaves) towards the
top (root). The key parameter here is the criterion useddi@csing clusters to be merged.
We focus on the Group Average criterion (UPGMA in [11]), whimeasures the similar-
ity of two candidate clusters as the average pairwise siityilaetween their members.
Thus, the average-link criterion allows to specify the sizeompactness of the resulting
clusters. This property is very useful in building compgmp@arance clusters and makes
the algorithm robust to outliers. A similarity thresholdathproduces visually compact
clusters only depends on the employed feature descrighus,can be estimated experi-
mentally and used on different data sets. Another advartbggglomerative methods is
that given the clustering trace from a full hierarchicalst&ring, i.e. the indices of clus-
ters merged in every step and the similarities between thentan rebuild the clusters
for a different similarity threshold at almost no computagl cost.

The main drawback of the standard average-link algorithits (N2 logN) run-time
andO(N?) space complexity. This comes from the requirement thatelsshould be
merged in decreasing order of similarity and that the ditamrmust be recomputed after
each agglomeration. In order to make agglomerative clingt@pplicable to large data
sets, both complexities have to be reduced. The improveprepbsed here is based on
the insight from [4] that for some criteria the same clusigrsolution can be achieved
with different merging order. Furthermore, the similad#tibetween clusters can be effi-
ciently recomputed based only on the centers and variances.

RNN algorithm. The improved clustering method is based on the constructige-
ciprocal nearest neighbgpairs (RNN pairs), that is of pairs of poindsandb, such that
ais b's nearest neighbor and vice versa [4]. RNN is applicabldustering criteria that
fulfill reducibility property[5] :

d(ci,cj) <inf(d(ci,c),d(cj,cx)) = inf(d(ci,c),d(cj, o)) < d(cUcj,c)



Algorithm 1 Average-Link algorithm with RNNs foR points.

last+— —1
while R# 0do
if last < Othen // Initialize a new chain with a random pointeR.
last < 0; Chainflast] < v € R, R« R\{v}; Sinflast] < 0; 1)
s — findNearestNeighbaBhainlast], R); sm«— sim(Chainlast],s) (2)
if sm> Sinflast] then /I No RNNs, add s to the chain.
last — last+1; Chainllast] «— s; R+« R\{s}; Sinflast] «+ sm (3)
else /I Found RNNs~ agglomerate the last two points in the chain

if Sinflast] > SimT hresholdhen
s « agglomerateghainlast],Chainlast — 1]); R« RuU{s}; last < last—2; 4)
elselast — —1 /I Discard the current chain.

wherec;,c; andcy are clusters and(cj,c) is a distance measure. This property effec-
tively states that the agglomeration of a RNN pair does nietr ahe nearest-neighbor
relations of other clusters. It is fulfilled for the averdlge¢ criterion regardless of the
employed similarity measure. The key to an efficient impletaton is therefore to en-
sure that RNNs can be found with as little computation asiplessThis can be achieved
by building anearest-neighbor chaif4]. An NN-chain consists of an arbitrary point,
followed by its NN, which is again followed by its NN from amgthe remaining points,
and so on. Thus, each NN-chain ends with an RNN pair. Theeglyadf the algorithm is
thus to start with an arbitrary point (Alg. 1, step (1)) anddup an NN-chain (2,3). As
soon as an RNN pair is found, the corresponding clusters eagblomerated (4). The
reducibility property guarantees that after the last twstdrs from the chain are merged,
the NN assignments stay valid for the remaining chain mesbérich can then be used
in the next iteration. Whenever the current chain is emptyew chain is started with
another random point (1). When a new cluster is created bgimgian RNN pair, its
new distance to other clusters has to be recomputed. Insfezxpensively computing
the average of all distances between cluster members, weeisalowing equivalence:

. 1 NM _
SiMeucta (G, O) = 1131 ZZ(X(I> —y)2 = 024 02+ (1 — y)?
i=1j=

wherex andy are the cluster membergy and iy are the centroidsy? and Gf are the
variances. Both the mean and variance of the new clusterheanlie computed incre-

mentally: N+ M 1 NM
H H 2
b= SR O i (NG MG g )
An amortized analysis shows that this algorithm has a coatjmutal complexity oD(N2d)
with only linear space requirements. This is an importamgiromement compared to the
standard algorithm, since it makes it possible to clust€,d@s of data points, which

was not feasible before. However, the time complexity i Isigh whenN is large. In
the following, we present a strategy to further improve @theorun-time efficiency.

Combined partitional-agglomerative algorithm (CPA). The idea of this improved
algorithm is to first partition the set of features and perfagglomerative clustering
within each partition independently [27]. However, there aeveral issues with this
method. The first is how to set the partitions so that theyaiarfeatures that cluster
well. A possible solution is to use a natural partition of theta points, stemming from
properties of the employed interest point detector. Théesogariant interest points are



detected at local maxima and minima of the Laplacian [13, If6}.g. SIFT descriptors
are used, which make a clear distinction between bright ankistructures, these extrema
form two distinct groups which do not intersect. For othesatiptors, this property has
to be verified. Anothers suitable partitioning method is &ams. The number of initial
partitions has to be small, otherwise k-means is not effici@rproblem occurs if a real
cluster is split over several partitions, since the agglatien is initially done between
points which are NNs within one partition only. This can altiee cluster centers and
variances and thus produce a different clustering treeedoae the impact of this effect
on the final clustering solution, we agglomerate clustethiwieach partition only up to
a certain similarity threshold. Next, given the clusterteemand variances obtained from
all partitions, we continue the agglomeration up to the afahe tree. If the similarity
threshold for initial clustering is smaller than for the fim@pearance clusters, then the
initial agglomeration provides small building blocks usscthe next level. However, the
initial threshold should produce a number of clusters wigdignificantly lower than N,
otherwise the complexity reduction would be limited.

To summarize the approach, we first partition features onsets of Laplacian max-
ima and minima. Then we apply k-means to each set to furthétipa the features. Ag-
glomerative clustering is applied within each partitiomdafly, the agglomerative method
is applied once more on all the cluster centers computectiptévious step. This com-
bined partitional-agglomerative method leads to an agprate clustering solution, but
as the experimental results show, the difference from thetesolution is negligible.

4 Fast matching

In this section, we propose a data structure for fast seartiigh dimensional feature
spaces. Many fast NN search methods are based on hypercliyperectangle ap-
proximations [2, 19]. They patrtition each feature dimensiodependently and trim the
candidates for NN dimension by dimension. However, in thigraach the efficiency de-
pends critically on the size of the hypercube. It also refieghe fact that a single NN
is searched in the whole space, for which thg (hypercube) norm can be used. How-
ever, in object class recognition we are often interestdthiding all features which are
similar to our query point, for which thie, (hypersphere) norm is needed. Although

is bounded by, in high-dimensional spaces the corners of the hypercubtairofar
more volume (data points) than the inscribed hypersphersolétion to this problem is
a data structure based on thenorm. We describe a fast data structure and an algorithm
for range search based only on a triangle-inequality-atgpglistance metric.

4.1 Ball tree search

Ball tree structure. A ball tree (or metric tree) is a hierarchical structure fepresent-

ing a set of points with the only assumption that the distdnnetion between points is

a metric [25]. Each nodéa...r) of the tree is represented by two parameters: center and
radius (Fig. 1(a)). The node center is a mean vector of alctiielren nodes, and the
radius is determined by the point farthest from the centke rRdius can also be smaller

if we are ready to accept a subset of the points similar to tieeygin return for a possible
speedup. We propose to set the radius as a quantile of orfierienle distances from the
node center.

Building ball trees. The problem of building an optimal ball tree structure isdarémtly
similar to that of agglomerative clustering [18, 20]. In #hgglomerative tree each node



\/-‘ VQ V3 VA \/5 \/0 \/7 \/8 SN vv
(a) (b) c
Figure 1: (a) Ball tree data structure. (b) Correspondirigtbee. (c) Agglomerative tree.

contains two child nodes, since the algorithm merges twetets at a time. However,
given the clustering trace which contains the indices ofgmérclusters and their sim-
ilarities, we can easily reconstruct a tree in which the nendf children of a node is
determined as a function of their similarity. This is illceged in Fig. 1(b,c). Intermediate
nodesta,tb andte are merged with correspondirgb ande. The size of the nodes is
increasing from the leaves to the root of the tree. Thus waiola ball-tree structure
from the agglomerative clustering trace with minimal aitaial cost.

Ball-tree search. A range search is a simple recursive procedure, which istitied
in Figs. 1(a) and 1(b). We start by computing the similaritya@uery poinfg to the top
nodesa andb and use the triangle inequality property. The search isicoed if the
distance to the node center minus the nodes radius is lessitbauery radius, i.e. if the
query ball intersects with the node ball. The search is ooeti further to all children
nodes that intersect with the query ball. Exhaustive se@relpplied within each node.
The speed of the search thus depends on the number of trés tbeenode radii, and the
query radius. The number of levels and the node radii can bsechexperimentally at a
low cost using the precomputed clustering trace. If we atgioterested in the NNs, the
search can be made more efficient, since the search radiusganogressively reduced
with each new NN candidate that is found.

5 Experiments
In this section we present and discuss the evaluation sesult

5.1 Test Data

Our test data consists of 1,000,000 scale invariant fesijor@vided by Harris-Laplace
and Hessian-Laplace detectors [16] with SIFT descript8t.[Features are detected in
5,000 images from the Caltech database and the PASCAL @mitaining pedestrians,
cars, motorbikes, faces, and cows. To validate the resuéisalso compare the recog-
nition performance of the baseline approach using the m®golustering and matching
methods and the UIUC multi-scale car set [1]. Additionalexments on more object
classes can be found in [17].

5.2 Clustering

Similarity measure. As described in Section 3, the agglomerative clusterinchotbt
is driven by the similarity measure and a threshold. To pcedueaningful clusters we
determine a reasonable range for the similarity distandasgube evaluation protocol
from [16], originally developed for matching pairs of imagdt computes precision (i.e.
the ratio of correct to false matches) and recall of matchiéis iespect to the similarity
threshold. Precision is high up to a given similarity thiddhand decreases for larger

http://www.pascal-network.org/challenges/VOC/



10°F 3 i i i3
10 . s ‘)" f
e LT o
2 /3/// '
107 * S

run time (se

oo

2 25 3 35 4 4 10 10° 1 10 107 10"
Similarity threshold x10° #eatures #elusters

Figure 2: (a) Matching precision vs. similarity distancé,) Run-time vs. number of
features. (c) Run time vs. number of clusters.

thresholds (cf. Fig. 2(a)). The useful thresholds are instieep part of the curve. For
small thresholds, only very similar features match, résglin a poor generalization of
the model to new object instances. For large thresholdse faktches dominate, thus the
recognition performance is low and the complexity increa3ée above method provides
a reliable and computationally inexpensive insight on thalarity thresholds that can
be used for agglomerative clustering. In contrast, the aimb distribution of k-means
clusters depend on tikgparameter, which is difficult to optimize if the real distrtibn of
features is unknown.

Run-time. Given a set of features, we first run the RNN method with a fixiedlarity
threshold obtained from Fig. 2(a), which results in a nurmdfeclusters. We then run
standard k-means for the same number of clusters with thémuiax number of iterations
set to 25. Finally, we run the CPA method with initial numbé&kemeans partitions set
to #featureg20000, and the initial agglomerative threshold set to Heéfdne obtained
from Fig. 2(a). Thus the methods are compared for the saméeuoi features and the
same number of clusters. Fig. 2(b) shows the run-time witipeet to the number of
features in the database. The run-time of CPA is an order ghihade lower than for k-
means and 2 orders of magnitude lower than the RNN algorifunexample, clustering
of 1M features takes 555h for RNIN41h for k-means, and 5h for CPA.

Fig. 2(c) shows the run-time with respect to the number ofiltesy clusters, using
200k features. For k-means, the run time increases lineattyk. This is to be expected
since the complexity is directly related to the number oktdus if the exhaustive search
is used during clustering. However, it is important to ndiattthis is the upper bound,
since the run time can be shorter if convergence is obtaméabs iterationsk ~ N, fast
NN search techniques [22], or other speedups [8] are useel ruriitime of the RNN is
high but almost independent of the number of clusters, simest of the computation is
spent at the bottom of the clustering tree, when the numbelusters is still large. For
a large number of clusters, the run-time for k-means exctexisne for RNN. From our
experience, the compression ratibeftureg#clusterswhich gives the best recognition
performance is in the range, where the proposed CPA methpéidorms k-means.

Cluster quality. Fig 3(a) displays the average intra-class variance of etasibtained

with the three methods. The results are reported with réspebe number of features,
and using the same number of clusters as in Fig. 2(b). Smgleber clusters were dis-
carded from this experiment in order not to bias the resilte diagram shows that the
variance of clusters obtained for both agglomerative naghis lower than for k-means

2The run-times for RNN agglomerative clustering in the ran§&00,000-1,000,000 points are estimated
since we were not able to run the clustering due to time caimés:



iance (x10°)

e clu

matched clusters members %

#matched clusters per feature

08 1 12 14 16 18 2 o8 1 12 14 1 %2 04 o0 os 1 12 14 1s 18 2 22
#eatures #elusters Helusters x10*

Figure 3: (a) Average variance of clusters. (b) Average nemath matched clusters per
feature. (c) Average percentage of matched features pehettluster.

clusters. The variances for RNN and CPA are nearly the sameompare the distribu-
tion of cluster centers and the compactness of the clustergarried out an additional
experiment. We count the number of cluster centers whiclwitten a given similarity
radius of a query point (cf. Fig. 3(b)). For k-means, the nandf matched clusters per
query feature is significantly larger than for RNN and CPAFIg. 3(c) we measure how
many cluster members do indeed match to the query featueep@itentage of matched
cluster members is higher for agglomerated clusters. Fegghese results show that the
k-means clusters are less compact and therefore match wfeatures compared to ag-
glomerated clusters, and that k-means cluster centeresgedpresentative for the cluster
members.

5.3 Matching

In this section we compare the efficiency of the ball tree dilgm to exhaustive search.
We report the speedup factor as the ratio of run-times f@@r&ndom queries. The effi-
ciency depends on several parameters: the number of featutiee dataset, the number
of tree levels, the node radii, and the query radius. We hhesen experimentally 10
levels between the size of the appearance clusters (botideshand the size of the top
node. The impact of the other parameters on the speedupestigated in the following
experiments. We use 200k of 128 dimensional descriptor280# of 36 dimensional
descriptors obtained with PCA. To show the results for difife numbers of features, we
also use a set of 50k points with 128-dim. descriptors.

Fig. 4(a) shows the speedup factor with respect to the &maaf lost matches. We
vary the radius of the nodes and compare the efficiency andethened matches with
exhaustive search. If we are looking for the exact matchesyall tree is nearly 80 times
faster than exhaustive search (for 200k features of 128.diim} factor significantly in-
creases up to 200 with 20% of lost matcheFhe gain is smaller for the dataset of 50k
points and for low dimensional features, which indicatesd the can expect further im-
provementwith increasing number of features and dimessieig. 4(b) shows the results
for different query radii (as a fraction of the top node siz€he efficiency significantly
drops as the size of the query increases, since many mors hage to be examined. In
most of our recognition experiments, the root node radius Watimes larger than the
size of the appearance clusters. Thus, the useful quenysr&in the range of 0.1-0.2.

5.4 Recognition performance.

Finally, we compare the recognition performance of objtadsrepresentations obtained
with the different clustering methods. We use the UIUC msitale car database and

Swhile it is difficult to make a general claim how many lost nfais are acceptable we experimentally
observed that we can accept 10% and more lost matches wihgulbss in recognition performance



speedup factor

speedup factor

5 0 1z 1 6 0 01 0z 03 04 05 o5 o1 o8 08 ) 1000 2000 3000 2000 5000
lost matches % query radius / root radius Hclusters

Figure 4: (a) Ball-tree speedup factor vs. number of lostchneg. (b) Ball-tree speedup
factor vs. query radius. (c) Recognition performance.

the evaluation criteria from [1]. We learn object repreatiohs on a training set of 50
car images from the PASCAL collection (cf. Sec. 5.1), fromakhwve extract a total of
10,351 features with 36 dimensions. We use the evaluatitarierfrom [1] based on the
overlap of ground truth and detected bounding boxes.

Fig. 4(c) shows precision-recall performance at the equat eate (EER) as a func-
tion of the the number of clusters for both k-means and théoaggrative method. The
solid curves depict the performance when the simple retiognapproach is used (cf.
Sec. 2); this performance can then still be improved by dpglyhe MDL verifica-
tion [12], as shown by the dashed curves. We make three aligars. First, the recog-
nition score is higher for agglomerated clusters (EER: %8.than for k-means (EER:
68%). The methods reach different performance levelsihjitibut can both be taken to
approximately the same performance (EERs: 96.4% and 92§ % verification stage.
Second, for both clustering schemes the performances diegrracefully for different
number of clusters, which is a result of our soft matchindhimita search hypersphere.
Third, since the cost of the soft matching increases withnilmaber of clusters that fall
inside the search radius and k-means does in fact produagsmmare such matches for
the same number of clusters (see Fig. 3(b)) we conclude tfigdmerative clustering is
preferable to k-means in terms of recognition costs.

Conclusions

Many of todays object class recognition approaches uséeciong and matching of local
features to build object models. While k-means is the mopufar method, this paper
shows that agglomerative clustering has several inherepgpties that make it highly at-
tractive for object class recognition: first, matching cardione efficiently using ball-tree
search in high-dimensional spaces and with large numbetssters; second the clusters
reflect the distribution of features resulting in fewer niate and lower complexity; and
third, recognition performance is often better than for &ams clusters.

This paper introduces various improvements of agglomerafustering in the con-
text of processing large numbers of high-dimensional festuln addition, it shows how
to use the clustering result to build a data structure focieffit matching. These improve-
ments result not only in a practically feasible and efficidostering scheme (we report
clustering results up to 1,000,000 features), but alsognitant speedups for matching
(up to 200 times faster). Last but not least, the proposedrithgns and the expected
improvements are experimentally validated.

Acknowledgments. This work has been funded, in part, by the EU project CoSy-@802-
004250).



References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]

[20]
[21]

[22]
(23]
[24]
[25]
[26]

[27]

S. Agarwal, A. Awan, and D. Roth, Learning to detect okgeio images via a sparse, part-
based representatioRAMI, 26(11):1475-1490, 2004.

J. Beis and D. Lowe, Shape Indexing Using ApproximaterdsaNeighbour Search in High-
Dimensional Spaces. I@BVPR pages 1000-1006, 1997.

J.L. Bentley, Multidimensional binary search treesdif® associative searching. @ommu-
nications of the ACM18(9):509-517, 1975.

J.P. Benzécri, Construction d’'une Classification Astante Hiérarchique par la Recherche
en Chaine des Voisins Réciproqu€AD, 7(2):209-218, 1982.

M. Bruynooghe, Méthodes Nouvelles en Classificatiortohuatique des Données Taxi-
nomiques NombreuseStatistique et Analyse des Donngg®4-42, 1977.

D. Comaniciu and P Meer, Mean Shift: A Robust ApproachamivFeature Space Analysis
PAMI, 24(5):603-619, 2002.

W.H.E. Day and H. Edelsbrunner, Efficient Algorithms FParglomerative Hierarchical Clus-
tering Methods.Journal of Classificationl:7—24, 1984.

C. Elkan, Using the Triangle Inequality to Accelerate Kdhs In ICML, pages 147-153,
2003.

P. Indyk, R. Motwani, Approximate Nearest Neighbors:wlnds Removing the Curse of
Dimensionality. INSTOC pages 604—613, 1998.

A.K. Jain and R.C. Dubes, Algorithms for Clustering BaPrentice-Hall, 1988

G.N. Lance and W.T. Williams, A General Theory of Cldigsitory Sorting Strategies: II.
Clustering SystemsComputer Journall0:271-277, 1967.

B. Leibe, E. Seemann, and B. Schiele, Pedestrian deteirt crowded scenes. 18VPR
pages 878-885, 2005.

D. Lowe, Distinctive image features from scale-ineati keypoints. IJCV, 2(60):91-110,
2004.

T. Liu, A. Moore, A. Gray, and K. Yang, An Investigatiori Bractical Approximate Nearest
Neighbor Algorithms. INNIPS pages 825-832, 2004.

J. MacQueen, Some Methods for Classification and AfmatyfdMultivariate Observations. In
Symp. on Math. Statistics and Probabilipages 281-297, 1967.

K. Mikolajczyk and C. Schmid, A performance evaluatiohlocal descriptors. PAMI,
27(10):1615-1630, 2005.

K. Mikolajczyk, B. Leibe and B. Schiele, Multiple Obje€lass Detection with a Generative
Model. CVPR 2006.

A.W. Moore, The Anchors Hierarchy: Using the Triangfeguality to Survive High Dimen-
sional Data. IlJAI, AAAI Press, pages 397—-405, 2000.

S. Nene, S. Nayar, A Simple Algorithm for Nearest NeighBearch in High Dimensions.
PAMI, 19(9):989-1003, 1997.

S.M. Omohundro, Five balltree construction algorithriiechnical Report TR-89-063, 1989.
K. Popat and R.W. Picard, Cluster-Based Probabilityd®land Its Application to Image and
Texture ProcessinglIP, 1997.

V. Ramasubramanian and K.K. Paliwal, A Generalizedrogiation of the k-d tree for fast
nearest neighbour searcRENCON pages 565-568, 1989.

J. Sivic and A. Zisserman, Video google: A text retriegpproach to object matching in
videos. InICCV. pages 1470-1478, 2003.

J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Fne®, Discovering object categories
in image collections. IHCCV, 2005.

J.K. Uhlmann, Satisfying general proximity/similgriqueries with metric trees. Imforma-
tion Processing Letters, 4@pages 175-179, 1991.

M. Weber, M. Welling, and P. Perona, Unsupervised Liayof Models for Recognition. In
ECCV, pages 628-0641, 2000.

Y. Zhao and G. Karypis, Evaluation of hierarchical ¢aring algorithms for document
datasets. ICIKM, pages 515-524, 2002.



