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Abstract. This paper presents a practical system for vision-based traffic scene
analysis from a moving vehicle based on a cognitive feedback loop which in-
tegrates real-time geometry estimation with appearance-based object detection.
We demonstrate how those two components can benefit from each other’s con-
tinuous input and how the transferred knowledge can be used to improve scene
analysis. Thus, scene interpretation is not left as a matter of logical reasoning, but
is instead addressed by the repeated interaction and consistency checks between
different levels and modes of visual processing. As our results show, the proposed
tight integration significantly increases recognition performance, as well as over-
all system robustness. In addition, it enables the construction of novel capabilities
such as the accurate 3D estimation of object locations and orientations and their
temporal integration in a world coordinate frame. The system is evaluated on a
challenging real-world car detection task in an urban scenario.

1 Introduction

Our target application is the analysis of traffic scenes, especially the detection of parked
and moving cars in crowded urban areas. Such an analysis has straightforward applica-
tions in automatic driver assistance systems for identifying potentially dangerous traffic
situations and as a basis for higher-level assistance functions. For example, the accurate
localization of parked cars may be used to direct a focus of attention to image locations
at which an inadvertent child might suddenly enter the street. As most of the child’s
body will be occluded by other vehicles, detection is particularly difficult in those situ-
ations, and contextual priming may buy precious reaction time.

However, detection from a moving vehicle is notoriously difficult because of the
combined effects of egomotion, blur, unknown scene content, significant partial occlu-
sion, and rapidly changing lighting conditions between shadowed and brightly lit areas.
In addition, geometric scene context, which has been routinely used for surveillance and
tracking applications from static cameras (e.g. [7, 12]), is far harder to obtain in a mov-
ing vehicle, where continuous recalibration is needed due to the changing environment
and vehicle pitch during acceleration and deceleration. While considerable progress has
been made in relatively clean highway situations (e.g. [2, 1]), the reliable detection of
vehicles and pedestrians in crowded urban areas is still an important challenge [5].
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Fig. 1. Overview of our system integrating recognition and geometry estimation.

In this paper, we focus purely on vision as the most informative sensor. However, we
integrate different cues and processing modalities: structure-from-motion (SfM), stereo
reconstruction, and object detection. Our system is based on the idea of cognitive loops.
While each of the component modules in isolation is limited, their interaction and ex-
change of information can compensate for the individual weaknesses and contribute to
a reliable system response. Thus, the SfM and reconstruction modules collect knowl-
edge about the scene geometry and the camera’s relative pose in it. However, relying
on the assumption that a dominant part of the scene change is caused by egomotion,
the estimation breaks down in crowded traffic situations. By detecting other moving
objects and factoring out their influence on the scene change, the recognition module
helps to obtain more reliable estimates. The recognition system, on the other hand, can
profit immensely from knowledge about the scene geometry by applying ground plane
constraints that the SfM and reconstruction modules can deliver.

The paper is structured as follows. The following section gives an overview of the
proposed system. Sections 2 and 3 then describe the two main components and their
interaction in detail. Section 4 finally presents experimental results.

System Overview. Figure 1 shows a visualization of our system setup. Our input data
are two video streams recorded by a calibrated stereo rig mounted on top of the test
vehicle, which are annotated with GPS/INS measurements. From this data, a Structure-
from-Motion (SfM) algorithm first computes a camera pose for each image. Subse-
quently, these poses are used to generate a compact reconstruction of the surrounding
road surface and facades using a fast dense-stereo algorithm [3]. Both of those stages
are highly optimized and run at about 25 fps. In parallel, an object detection module
is applied to both camera images in order to detect cars in the scene. The three mod-
ules are integrated in a tight cognitive loop. For each image, the object detection mod-
ule receives scene geometry information, extracted from the previous frame, from the
other two modules and feeds back information about detected objects to them, which
is then used for processing the next frame. Thus, the modules exchange information
that helps compensate for their individual failure modes and improves overall system
performance. The next sections explain the different modules in detail.

2 Real-time Geometry Estimation

In the first pathway, our system computes and permanently updates an estimate of the
surrounding scene geometry. As space does not permit an in-depth discussion of well-
known algorithms for Structure-from-Motion pipelines [6] and dense stereo [14], we
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Fig. 2. (left) The fast feature measure used for SfM. (right) Rectified stereo pair.

limit the description to those changes that were made to allow for high-speed process-
ing. Details of the described algorithms can be found in [3].

Real-time Structure-from-Motion Computation. A real-time feature matcher ex-
tracts image feature points by finding local maxima of a very simple feature measure,
based on the average intensity (AI) of four sub-regions (Fig. 2(left)): d = abs((AI1 +
AI4)− (AI2 + AI3)). The extracted features are matched between consecutive images
based on a fast sum of absolute intensity differences and then fed into a classic SfM
pipeline, which reconstructs feature tracks and refines 3D point locations by perform-
ing triangulation. Sufficient baseline between images is guaranteed by only accepting a
new image when the GPS or odometry signals sufficient movement. For efficiency rea-
sons, only the green channel of one of the cameras is processed during SfM. A bundle
adjustment routine is running in parallel with the main SfM algorithm to refine camera
poses and 3D feature locations for previous frames and thus reduce drift. Additional
GPS and odometry information can be used to guide feature matching during fast turns,
to compensate for remaining drift, and to transfer the cameras into a global world co-
ordinate system. The drift-compensated and globally aligned cameras are then rectified
so that their up-vector is parallel to the world gravity vector. This ensures that 3D lines
parallel to the gravity vector are displayed as vertical lines in each stereo pair.

Real-time 3D Reconstruction. Next, a real-time geometry module reconstructs build-
ing facades using the (realistic) assumption that those can be modeled by ruled surfaces
(i.e. surfaces made up of non-intersecting line segments) which are parallel to the grav-
ity vector. For each rectified stereo pair, disparity values are computed for every vertical
line using a single dynamic programming pass which is based on the ordering constraint
and a robust line-based similarity measure (c.f. Fig.2(right)). Besides the tremendous
gain in speed compared with algorithms which run dynamic programming on each hor-
izontal scan line, the reconstruction becomes more accurate, as information over each
vertical scan line can be integrated. The reconstructed volumes from all stereo pairs are
then integrated over time into a topological map by a voting based carving algorithm.
Finally, the road itself is reconstructed by fitting lines through the known contact points
of the test vehicle’s wheels with the road. This way of road reconstruction is not only
faster than using dense stereo algorithms, but also more accurate since roads are often
not textured enough for dense stereo.

Derivation of Geometric Constraints. For each image, the geometry module com-
putes an estimate of the current ground plane by fitting a plane through the reconstructed
road surface around the wheel contact points and extrapolating it along the current view-
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Fig. 4. Effect of scene geometry constraints: (a) object hypotheses before and (b) after ground
plane constraints are enforced; (c) False positive that is filtered out by facade constraints.

ing direction. By intersecting this plane with already reconstructed building facades,
we can restrict the possible space in which objects may occur. This information is then
passed to the recognition module to guide and improve object detection performance.

3 Object Detection

The recognition system is based on the ISM approach [8]. A bank of 5 single-view ISM
detectors is run in parallel to capture different aspects of cars (see Fig. 3 for a visual-
ization of their distribution over viewpoints). For efficiency reasons, we make use of
symmetries and run mirrored versions of the same detectors for the other semi-profile
views. All detectors share the same set of initial features: Shape Context descriptors
[11], computed at Harris-Laplace, Hessian-Laplace, and DoG interest regions [11, 10].
During training, extracted features are clustered into appearance codebooks, and each
detector learns a dedicated spatial distribution for the codebook entries that occur in its
target aspect. During recognition, features are again matched to the codebooks, and ac-
tivated codebook entries cast probabilistic votes for possible object locations and scales
according to their learned spatial distributions. The votes are collected in 3-dimensional
Hough voting spaces, one for each detector, and maxima are found using MSME [8].

Integration of Ground Surface Constraints. Geometric scene constraints, such as the
knowledge about the ground surface on which objects can move, can help detection in
several important respects. First, they can restrict the search space for object hypotheses
to a corridor in the (x, y, scale) volume, thus allowing significant speedups and filtering
out false positives. Second, they make it possible to evaluate object hypotheses under a
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Fig. 5. (top) Car detections on typical images from the city scenario. (bottom) Examples for the
difficulties in this scenario: (a) motion blur, (b) lens flaring, (c) bright lighting (d) strong shadows.

size prior and “pull” them towards more likely locations. Last but not least, they allow
to place object hypotheses at 3D locations, so that they can be corroborated by temporal
integration. In the following, we use all three of those ideas to improve detection quality.

Given the camera calibration from SfM and a ground plane estimate from the 3D
reconstruction module, we can estimate the 3D location for each object hypothesis by
projecting a ray through the base point of its bounding box and intersecting it with the
ground plane. If the ray passes above the horizon, we can trivially reject the hypothesis.
In the other case, we can estimate its real-world size by projecting a second ray through
the bounding box top point and intersecting it with a vertical plane through its 3D base.
Using this information, we can formally express the likelihood for the real-world object
H given image I by the following marginalization over the image-plane hypotheses h:

p(H |I) =
∑

h

p(H |h, I)p(h|I) ∼
∑

h

p(h|H)p(H)p(h|I) (1)

where p(H) expresses a prior for object sizes and distances, and p(h|H) reflects the
accuracy of our 3D estimation. In our case, we enforce a uniform distance prior up to a
maximum depth of 70m and model the size prior by a Gaussian. The hypothesis scores
are thus modulated by the degree to which they comply with scene geometry, before
they are passed to the next stage (Fig. 4(a,b)).

Multi-view Integration. In order to fuse the single-view hypotheses into a consistent
system response, we next apply the following multi-view integration stage. We first
compute a top-down segmentation for each hypothesis h according to the method de-
scribed in [8]. This yields two per-pixel probability maps p(figure|h) and p(ground |h)
per hypothesis. With their help, we can express the hypothesis likelihood p(h|I) in
terms of the pixels it occupies:

p(h|I) =
∑
p∈I

p(h|p) =
∑

p∈Seg(h)

p(p = figure|h)p(h). (2)

where Seg(h) denotes the segmentation area of h, i.e. the pixels for which p(p =
figure|h) > p(p = ground |h). We then search for the optimal combination of hy-
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Fig. 6. Visualization of the temporal integration stage: (a) estimated 3D object locations (in
green); (b) real-world object hypotheses obtained by mean-shift clustering (in yellow); (c) final
hypotheses selected by the QBOP (in red).

potheses that best explains the image content under the constraint that each pixel can be
assigned to at most one hypothesis. This is achieved by solving the following Quadratic
Boolean Optimization Problem (QBOP):

max
m

mT Qm = mT

⎡
⎢⎣

q11 · · · q1M

...
. . .

...
qM1 · · · qMM

⎤
⎥⎦m (3)

where m = (m1, m2, . . . , mM ) is a vector of indicator variables, such that m i = 1 if
hypothesis hi is accepted and 0 otherwise. Q is an interaction matrix whose diagonal
elements qii express the merits of each individual hypothesis, while the off-diagonal
elements qij express the cost of their overlap. In theory, we could directly use the hy-
pothesis likelihood to define the merit. However, since we are dealing with incomplete
information from sparsely sampled interest regions, we have to add a regularization
term incorporating the number of pixels N in the figure-ground segmentation, as well
as a normalization factor Aσ,v(h), expressing the expected area of a hypothesis at its
detected scale and aspect. The merit terms thus becomes

qii =−κ1 +
p(hi|Hi)p(Hi)

Aσ,v(hi)

⎛
⎝(1−κ2)N + κ2

∑
p∈Seg(h)

p(p = fig.|hi)

⎞
⎠ . (4)

For the interaction terms, we measure the hypothesis overlap in the image and subtract
the contribution of the overlapping area from the hypothesis h ∗ ∈ {hi, hj} that is
farther away from the camera.

qij =−1
2

p(h∗|H∗)p(H∗)
Aσ,v(h∗)

∑
p∈Seg(hi)∩Seg(hj)

((1−κ2) + κ2p(p = fig.|h∗)) (5)

This formulation allows to select the best global interpretation for each image from the
output of the different single-view detectors. Since typically only a subset of hypotheses
produces overlaps, it is generally sufficient to compute a fast greedy approximation to
the optimal solution. Examples for the resulting detections are shown in Figure 5.



Fig. 7. Online 3D car location estimates (using only information from previous frames).

Integration of Facade Constraints. Using the information from 3D reconstruction, we
add another step to check if hypothesized 3D object locations lie behind reconstructed
facades (c.f. Fig. 4(c)). As this information will typically only be available after a certain
time delay (i.e. when our system has collected sufficient information about the facade),
this filter is applied as part of the following temporal integration stage.

Temporal Integration. The above stages are applied to both camera images simul-
taneously. The result is a set of 3D object hypotheses for each frame, registered in a
world coordinate system. Each hypothesis comes with its 3D location, a 3D orientation
vector inferred from the selected viewpoint, and an associated confidence score. Since
each individual measurement may be subject to error, we improve the accuracy of the
estimation process by integrating the detections over time.

Figure 6 shows a visualization of the integration procedure. We first cluster consis-
tent hypotheses by starting a mean-shift search with adaptive covariance matrix from
each new data point H and keeping all distinct convergence points H (Fig. 6(b)). We
then select the set of hypothesis clusters that best explains our observations by again
solving a QBOP, only this time in the 3D world space:

q̃ii = −κ̃1 +
∑

H∈Hi

e−(t−ti)/τ((1 − κ̃2) + κ̃2 p(H |Hi)p(H |I)) . (6)

q̃ij = −1
2

∑
H∈Hi∩Hj

e−(t−t∗)/τ((1 − κ̃2) + κ̃2 p(H |H∗)p(H |I) + κ̃3 O(Hi,Hj)) (7)

where p(H |Hi) is obtained by evaluating the location of H under the covariance of H i;
H∗ denotes the weaker of the two hypothesis clusters; and O(H i,Hj) measures the
overlap between their real-world bounding boxes, assuming average car dimensions.
This last term is the main conceptual difference to the previous formulation in eqs. (4)
and (5). It introduces a strong penalty term for hypothesis pairs that overlap physically.
In order to compensate for false positives and moving objects, each measurement is
additionally subjected to a small temporal decay with time constant τ . The results of
this procedure are displayed in Fig. 6(c).

Estimating Car Orientations. Finally, we refine our orientation estimates for the ver-
ified car hypotheses using the following two observations. First, the main estimation
errors are made both along a car’s main axis and along our viewing direction. Since the
latter moves when passing a parked car, the cluster’s main axis is slightly tilted towards
our egomotion vector (c.f. Fig.6(a)). Second, the semi-profile detectors, despite being



trained only for 30◦ views, respond to a relatively large range of viewpoints. As a result,
the orientation estimates from those detectors are usually tilted slightly away from our
direction of movement. In practice, the two effects compensate for each other, so that a
reasonably accurate estimate of a car’s main axis can be obtained by averaging the two
directions. Some typical examples of the resulting 3D estimates are shown in Fig. 7.

Feedback into SfM and Reconstruction Modules. The results of the previous stages
have demonstrated that object detection can benefit considerably from knowledge about
the scene geometry, delivered by the SfM and 3D reconstruction modules. However,
those modules can also benefit from the results of object detection.

As discussed above, the SfM module relies on the assumption that a dominant part
of the scene change is caused by egomotion. As a result, moving and/or shiny cars de-
grade the accuracy of the estimated camera positions. Although RANSAC outlier rejec-
tion [4] can to a certain degree compensate for this, there are many natural car motions
that can be misinterpreted as static because of ambiguities in their image projection.
E.g. following a car in the same lane at more or less the same speed on a straight sketch
makes it clearly indistinguishable from a static object at infinity. Also, a car approach-
ing on the other lane with a speed correlated to ours is indistinguishable from a static
car parked somewhere in the middle of both lanes. Similarly, the fast 3D reconstruction
relies on the assumption that the scene can be represented by ruled surfaces. Obviously,
this is no longer the case when cars are parked in front of the facades. As a result, the
cars introduce erroneous measurements into the dense stereo calculations which may
influence the accuracy of the resulting scene geometry estimate (and thus of the ground
plane estimate that will be provided to the detection module for the next frame).

The object detection module therefore completes the cognitive loop by feeding back
information about its detections into the SfM and Reconstruction modules. By inform-
ing the SfM algorithm where cars can be expected, features will not be instantiated or
tracked in those areas, thereby avoiding erroneous measurements which would result
from tracking non-stationary points on moving and shiny cars. Similarly, object detec-
tion helps the reconstruction module by segmenting out all detected cars, so that the
dense stereo reconstruction can focus on image areas that fulfill the ruled surface as-
sumption. This continuous feedback of information is a crucial point for guaranteeing
system reliability in complex real-world scenarios.

4 Experimental Results

In order to evaluate our method, we applied it to a test sequence, recorded by a camera
vehicle over a distance of approximately 500m. The stereo input streams were captured
at the relatively low resolution of 380 × 288 pixels due to restrictions of the recording
setup. Altogether, the data set comprises 1175 image pairs, which are processed at their
original resolution by the SfM and reconstruction modules and bilinearly interpolated
to twice that size for object detection (similar to [10]). The 5 single-view detectors were
trained on images taken from the LabelMe database [13], for which viewpoint annota-
tions and rough polygon outlines were already available (c.f. Fig.3). In all experiments,
we set κ2 =0.95, κ̃2 =0.5, and plot performance curves over the value of κ 1.
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Fig. 8. (left) Comparison of the detection performance with and without scene geometry con-
straints. (right) 3D car location estimates using also information from future frames.

For a quantitative estimate of the performance improvement brought about by the
inclusion of geometry constraints, we annotated the first 600 frames of the video se-
quence by marking all cars that were within a distance of 50m and visible by at least
40-50%. It is important to note that this includes many difficult cases with partial visi-
bility, so it is unrealistic to expect perfect detection in every frame. We then evaluated
the detection performance with and without ground plane constraints using the evalua-
tion criterion from [9]. The results of this experiment are shown in Figure 8. As can be
seen from the plot, detection reaches a level of about 50% recall in both cases. While
the original recognition system yields 1.3 false positives per image at this level of recall,
the inclusion of ground plane constraints significantly reduces the false positive rate to
one every five images at 50% recall, or even one every ten images at 40% recall.

Counted over its full length, the sequence contains 77 (sufficiently visible) static
and 4 moving cars, all but 6 of which are correctly detected in at least one frame. The
online estimation of their 3D locations and orientation usually converges at a distance
between 15 and 30m and leads to a correct estimate for 68 of the static cars; for 5
more, the obtained estimate would also have been correct, but does not reach a suf-
ficiently high confidence level to be accepted. The estimates can further be improved
by backpropagating also information from future frames (Fig. 8(right)). The SfM and
reconstruction modules also profit from the feedback from object detection in terms of
increased robustness. However, the exact benefit is hard to quantify, since no ground
truth was available for the 3D measurements.

5 Discussion and Conclusion

In this paper, we have presented a system for cognitive traffic scene analysis that closely
integrates structure-from-motion, 3D reconstruction, and object detection into a cogni-
tive loop. At first view, it might seem unintuitive to incur the overhead of executing all
three of those components in parallel, just to improve recognition performance. How-
ever, rather the opposite is the case: each individual task becomes considerably easier
by its integration in the cognitive loop and the continuous feedback from the other



modules. As we have shown in this paper, the close interaction between the different
modules increases both the recognition and 3D estimation performance, as well as the
robustness of the entire system. In addition, our highly efficient implementation of the
SfM and reconstruction modules allows them to run at video frame rate, so that their in-
clusion entails no additional delay. Although our current implementation of the object
detector is not optimized for real-time processing yet, its individual stages are suffi-
ciently simple, so that a time-efficient implementation is well possible.

In future work, we will aim to improve the representation of moving cars by adding
a dedicated motion model. Secondly, we plan to extend recognition to other traffic par-
ticipants, such as pedestrians and bicyclists, which was hitherto hindered by the poor
resolution of our input video streams. Inferring a selective focus of attention from the
detected car locations will help overcome this problem. Last but not least, we will opti-
mize the implementation of our object detector for inclusion into a real-time application.
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