
Integration of Wireless Gesture Tracking, Object
Tracking, and 3D Reconstruction in the Perceptive

Workbench

Bastian Leibe1, David Minnen2, Justin Weeks2, and Thad Starner2

1 Perceptual Computing and Computer Vision Group, ETH Zurich
Haldeneggsteig 4, CH-8092 Zurich, Switzerland

leibe@inf.ethz.ch
2 Contextual Computing Group, GVU Center

Georgia Insititute of Technology
fdminn,joostan,thadg@cc.gatech.edu

Abstract. The Perceptive Workbench endeavors to create a spontaneous and
unimpeded interface between the physical and virtual worlds. Its vision-based
methods for interaction constitute an alternative to wired input devices and teth-
ered tracking. Objects are recognized and tracked when placed on the display
surface. By using multiple infrared light sources, the object’s 3D shape can be
captured and inserted into the virtual interface. This ability permits spontaneity
since either preloaded objects or those objects selected at run-time by the user
can become physical icons. Integrated into the same vision-based interface is the
ability to identify 3D hand position, pointing direction, and sweeping arm ges-
tures. Such gestures can enhance selection, manipulation, and navigation tasks.
In previous publications, the Perceptive Workbench has demonstrated its utility
for a variety of applications, including augmented reality gaming and terrain nav-
igation. This paper will focus on the implementation and performance aspects
and will introduce recent enhancements to the system.
Key Words. gesture, 3D object reconstruction, object recognition, tracking, com-
puter vision, infrared, virtual reality

1 Introduction

Humans and computers have interacted primarily through devices that are constrained
by wires. Typically, the wires limit the distance of movement and inhibit freedom of
orientation. In addition, most interactions are indirect. The user moves a device as an
analogue for the action to be created in the display space. We envision an untethered
interface that accepts gestures directly and can accept any objects the user chooses
as interactors. In this paper, we apply our goal to workbenches, a subgroup of semi-
immersive virtual reality environments.

Computer vision can provide the basis for untethered interaction because it is flex-
ible, unobtrusive, and allows direct interaction. Since the complexity of general vision
tasks has often been a barrier to widespread use in real-time applications, we simplify
the task by using a shadow-based architecture.

An infrared light source is mounted on the ceiling. When the user stands in front
of the workbench and extends an arm over the surface, the arm casts a shadow on the
desk’s surface, which can be easily distinguished by a camera underneath.

The same shadow-based architecture is used in the Perceptive Workbench [16] to
reconstruct 3D virtual representations of previously unseen real-world objects placed on
the desk’s surface. In addition, the Perceptive Workbench can illuminate objects placed
on the desk’s surface to identify and track the objects as the user manipulates them.
Taking its cues from the user’s actions, the Perceptive Workbench switches between
these three modes automatically. Computer vision controls all interaction, freeing the
user from the tethers of traditional sensing techniques.

In this paper, we will discuss implementation and performance aspects that are im-
portant to making the Perceptive Workbench a useful input technology for virtual re-
ality. We will examine performance requirements and show how our system is being
optimized to meet them.

2 Related Work

While the Perceptive Workbench [16] is unique in its ability to interact with the phys-
ical world, it has a rich heritage of related work [1, 13, 14, 20, 23, 31, 32, 34, 39]. Many
augmented desk and virtual reality designs use tethered props, tracked by electrome-
chanical or ultrasonic means, to encourage interaction through gesture and manipula-
tion of objects [3, 1, 23, 29, 34]. Such designs tether the user to the desk and require the
time-consuming ritual of donning and doffing the appropriate equipment.

Fortunately, the computer vision community has taken up the task of tracking hands
and identifying gestures. While generalized vision systems track the body in room-
and desk-based scenarios for games, interactive art, and augmented environments [2,
40], the reconstruction of fine hand detail involves carefully calibrated systems and is
computationally intensive [19]. Even so, complicated gestures such as those used in
sign language [28, 35] or the manipulation of physical objects [25] can be recognized.
The Perceptive Workbench uses such computer vision techniques to maintain a wireless
interface.

Most directly related to the Perceptive Workbench, Ullmer and Ishii’s “Metadesk”
identifies and tracks objects placed on the desk’s display surface using a near-infrared
computer vision recognizer, originally designed by Starner [31]. Unfortunately, since
not all objects reflect infrared light and since infrared shadows are not used, objects of-
ten need infrared reflective “hot mirrors” placed in patterns on their bottom surfaces to
aid tracking and identification. Similarly, Rekimoto and Matsushita’s “Perceptual Sur-
faces” [20] employ 2D barcodes to identify objects held against the “HoloWall” and
“HoloTable.” In addition, the HoloWall can track the user’s hands (or other body parts)
near or pressed against its surface, but its potential recovery of the user’s distance from
the surface is relatively coarse compared to the 3D pointing gestures of the Perceptive
Workbench. Davis and Bobick’s SIDEshow [6] is similar to the Holowall except that it
uses cast shadows in infrared for full-body 2D gesture recovery. Some augmented desks
have cameras and projectors above the surface of the desk; they are designed to augment
the process of handling paper or interact with models and widgets through the use of

fiducials or barcodes [32, 39]. Krueger’s VideoDesk [13], an early desk-based system,
uses an overhead camera and a horizontal visible light table to provide high contrast
hand gesture input for interactions which are then displayed on a monitor on the far
side of the desk. In contrast with the Perceptive Workbench, none of these systems
address the issues of introducing spontaneous 3D physical objects into the virtual envi-
ronment in real-time and combining 3D deictic (pointing) gestures with object tracking
and identification.

3 Goals

Our goal is to create a vision-based user interface for VR applications. Hence, our sys-
tem must be responsive in real-time and be suitable for VR interaction. In order to eval-
uate the feasibility of meeting this goal we need to examine the necessary performance
criteria.

System Responsiveness System responsiveness, the time elapsed between a user’s
action and the response displayed by the system [38], helps determine the quality of the
user’s interaction. Responsiveness requirements vary with the tasks to be performed.
An acceptable threshold for object selection and manipulation tasks is typically around
75 to 100 ms [36, 38]. System responsiveness is directly coupled with latency. It can be
calculated with the following formula:

SystemResponsiveness = SystemLatency+DisplayT ime (1)

System latency, often also called device lag, is the time it takes our sensor to acquire
an image, calculate and communicate the results, and change the virtual world accord-
ingly. Input devices should have low latency, ideally below 50 ms. Ware and Balakrish-
nan measured several common magnetic trackers and found them to have latencies in
the range of 45 to 72 ms [36].

In our situation, system latency depends on the time it takes the camera to transform
the scene into a digital image, image processing time, and network latency to commu-
nicate the results. Given an average delay of 1.5 frame intervals at 33 ms per interval
to digitize the image results in a 50 ms delay. In addition, we assume a 1.5 frame in-
terval delay in rendering the appropriate graphics. Assuming a constant 60 frame per
second (fps) rendering rate results in an additional 25 ms delay for system responsive-
ness. Since we are constrained by a 75 ms overhead in sensing and rendering, we must
minimize the amount of processing time and network delay in order to maintain an ac-
ceptable latency for object selection and manipulation. Thus, we concentrate on easily
computed vision algorithms and a lightweight UDP networking protocol for transmit-
ting the results.

Accuracy With the deictic gesture tracking, we estimate that absolute accuracy will
not need to be very high. Since the pointing actions and gestures happen in the three
dimensional space high above the desk’s surface, discrepancies between a user’s precise

�����������
�����������
�����������
������������
�����������
�����������

���
��
��
��
��
��
��
��
��
��
��
��

���
���

�
�
�
�
�
�
�
�
�
�
�

���
���
��

��
��
��

���
��

�������������������������������������
�������������������������������������
�������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

�
�

�

�
�
�
� ���������������������������������������

�

�

�
�
�
�

������������������
������������������
������������������
���
���
����
����
���
��� �����

�����
��������

�������
�
�

��
��
���
���

�
�

������
������
������
�������

�������
�������
�������
�������

�������
�������
�������
��������������

���
���
���
���

�

�������
�������
�������
�������

������
������
������
�������������

���
���
���

�����������������
�����������������
�����������������
�����������������
��

����������������������
���
�������������������������������

����
��� �������������� �������� �����

��
��
��
��
�

Projector

IR Illum.
B/W Camera
w/ IR filter

Ceiling mounted IR Illuminators (7)

Mirror ���
�

��������
�������

�����
�����
�����
�����

�
������

�
�
�
�
�
�
�
��
�
�

�����
�����
�����
�����
�

� ��������������� �

�

����������
����������
����������
����������
����������

�

�

���������������
���������������
���������������
���������������
���������������� ���

����
����
�����

�����
�
�
� ����� ������

�
������

����
� ����������� ����

����
�����

�����
�
�
� ����� ����

�
����

���
� �������������

�����
��
��
������� ������������

�
��
�������

���
���������
���
�
�
�

���
�
�
�

������������������
������������������
�������������������

�������������������
�
�

� ������������������� ����� ��
��
��
��� ������

� ����������
����
����
�����

����
����
����
�����

���
���
����
������

�

��

���������
���������
���������
���������
�����������
��
��
��

���

��

����������
���������
���������
���������
���������
���������
��
��

���������������������������������

�

�������������������
�������������������
�������������������
�������������������
��������������������
�
�
�

������������������������������
�����������������
������

������

������

���

�������������
��������
��������

��������
��������
������������

���������������
����
����
����
���
���

�������
�������
�������
�������
�����

��������
��������
���������

���������
�
�
����� ������ �����������

��
��
�������

�����
�
�
�
��
��
������

���

����
�
�
�
�
����

�������
�������
�������

�������
�������
�������

�
���������
���������
���������
���������

���������
���������
���������
���������

���������������
��������������
��������������
��������������

�
�

����������
����������
����������
����������

����������
����������
����������
����������
�
�

���
��
��
��
��
��
��
��
��
��
��
��

��
��

�
�
�
�
�
�
�
�
�
�
�

B/W Camera

IR Illuminators

Ceiling mounted IR Illuminators (7)

�����
�

�
��������������
��������������

B/W Camera
w/ IR filter

w/ IR filter

��
��
�����
����

��
��

Fig. 1. Light and camera positions for the Perceptive Workbench. The top view shows how shad-
ows are cast and the 3D arm position is tracked.

pointing position and the system’s depiction of that position is not obvious or distract-
ing. Instead, it is much more important to capture the trend of movement and allow for
quick correctional motions.

For the object tracking, however, this is not the case. Here, the physical objects
placed on the desk already give a strong visual feedback and any system response dif-
fering from this position will be very distracting. This constraint is relatively easy to
satisfy, though, since the task of detecting the position of an object on the desk’s sur-
face is, by nature, more accurate than finding the correct arm orientation in 3D space.

4 Apparatus

The display environment for the Perceptive Workbench builds on Fakespace’s immer-
sive workbench [37]. It consists of a wooden desk with a horizontal frosted glass surface
on which an image can be projected from behind the workbench.

We placed a standard monochrome surveillance camera under the projector to watch
the desk’s surface from underneath (see Figure 1). A filter placed in front of the camera
lens makes it insensitive to visible light and to images projected on the desk’s surface.
Two infrared illuminators placed next to the camera flood the desk’s surface with in-
frared light that is reflected back toward the camera by objects placed on the desk.

We mounted a ring of seven similar light sources on the ceiling surrounding the desk
(Figure 1). Each computer-controlled light casts distinct shadows on the desk’s surface
based on the objects on the table (Figure 2a). A second infrared camera and another
infrared light source are placed next to the desk to provide a side view of the user’s
arms (Figure 3a). This side camera is used solely for recovering 3D pointing gestures.

Note that at any time during the system’s operation, either the ceiling lights, or
the lights below the table are active, but not both at the same time. This constraint is
necessary in order to achieve reliable detection of shadows and reflections.

We decided to use near-infrared light since it is invisible to the human eye. Thus,
illuminating the scene does not interfere with the user’s interaction. The user does not
perceive the illumination from the infrared light sources underneath the table, nor the

shadows cast from the overhead lights. On the other hand, most standard charge-coupled
device (CCD) cameras can still see infrared light, providing an inexpensive method for
observing the interaction. In addition, by equipping the camera with an infrared filter,
the camera image can be analyzed regardless of changes in (visible) scene lighting.

We use this setup for three different kinds of interaction:

– Recognition and tracking of objects placed on the desk surface based on their con-
tour

– Tracking of hand and arm gestures
– Full 3D reconstruction of object shapes from shadows cast by the ceiling light-

sources.

For display on the Perceptive Workbench we use OpenGL, the OpenGL Utility
Toolkit (GLUT) and a customized version of a simple widget package called microUI
(MUI). In addition, we use the workbench version of VGIS, a global terrain visualiza-
tion and navigation system [37] as an application for interaction using hand and arm
gestures.

5 Object Tracking & Recognition

As a basic precept for our interaction framework, we want to let users manipulate the
virtual environment by placing objects on the desk surface. The system should recog-
nize these objects and track their positions and orientations as they move over the table.
Users should be free to pick any set of physical objects they choose.

The motivation behind this is to use physical objects in a “graspable” user interface
[9]. Physical objects are often natural interactors as they provide physical handles to let
users intuitively control a virtual application [11]. In addition, the use of real objects
allows the user to manipulate multiple objects simultaneously, increasing the commu-
nication bandwidth with the computer [9, 11].

To achieve this tracking goal, we use an improved version of the technique described
in Starner et al. [27]. Two near-infrared light-sources illuminate the desk’s underside
(Figure 1). Every object close to the desk surface (including the user’s hands) reflects
this light, which the camera under the display surface can see. Using a combination
of intensity thresholding and background subtraction, we extract interesting regions of
the camera image and analyze them. We classify the resulting blobs as different object
types based on a 72-dimensional feature vector reflecting the distances from the center
of the blob to its contour in different directions.

Note that the hardware arrangement causes several complications. The foremost
problem is that our two light sources under the table can only provide uneven lighting
over the whole desk surface. In addition, the light rays are not parallel, and the reflection
on the mirror surface further exacerbates this effect. To compensate for this, we perform
a dynamic range adjustment. In addition to a background image, we store a “white”
image that represents the maximum intensity that can be expected at any pixel. This
image is obtained by passing a bright white (and thus highly reflective) object over the
table during a one-time calibration step and instructing the system to record the intensity
at each point. The dynamic range adjustment helps to normalize the image so that a

Fig. 2. (a) Arm shadow from overhead IR lights; (b) resulting contour with recovered arm direc-
tion.

single threshold can be used over the whole table. An additional optimal thresholding
step is performed for every blob to reduce the effects of unwanted reflections from
users’ hands and arms while they are moving objects. Since the blobs only represent a
small fraction of the image, the computational cost is low.

In order to handle the remaining uncertainty in the recognition process, two final
steps are performed: detecting the stability of a reflection and using tracking informa-
tion to adjust and improve recognition results. When an object is placed on the table,
there will be a certain interval when it reflects enough infrared light to be tracked but
is not close enough to the desk’s surface to create a recognizable reflection. To detect
this situation, we measure the change in size and average intensity for each reflection
over time. When both settle to a relatively constant value, we know that an object has
reached a steady state and can now be recognized. To further improve classification
accuracy, we make the assumption that objects will not move very far between frames.
Thus, the closer a blob is to an object’s position in the last frame, the more probable it is
that this blob corresponds to the object and the less reliable the recognition result has to
be before it is accepted. In addition, the system remembers and collects feature vectors
that caused some uncertainty (for example, by an unfamiliar orientation that caused the
feature vector to change) and adds them to the internal description of the object, thus
refining the model.

In this work, we use the object recognition and tracking capability mainly for cursor
or place-holder objects. We focus on fast and accurate position tracking, but the system
may be trained on a different set of objects to serve as navigational tools or physical
icons [31]. A future project will explore different modes of interaction based on this
technology.

6 Deictic Gesture Tracking

Following Quek’s taxonomy [18], hand gestures can be roughly classified into symbols
(referential and modalizing gestures) and acts (mimetic and deictic gestures). Deictic

Fig. 3. (a) image from side camera (without infrared filter); (b) arm contour from similar image
with recovered arm direction.

(pointing) gestures depend strongly on location and orientation of the performing hand.
Their meaning is determined by the location at which a finger is pointing, or by the angle
of rotation of some part of the hand. This information acts not only as a symbol for the
gesture’s interpretation, but also as a measure of the extent to which the corresponding
action should be executed or to which object it should be applied.

For navigation and object manipulation in a virtual environment, many gestures will
have a deictic component. It is usually not enough to recognize that an object should be
rotated – we will also need to know the desired amount of rotation. For object selection
or translation, we want to specify the object or location of our choice just by pointing
at it. For these cases, gesture recognition methods that only take the hand shape and
trajectory into account will not suffice. We need to recover 3D information about the
users’ hands and arms in relation to their bodies.

In the past, this information has largely been obtained by using wired gloves or
suits, or magnetic trackers [3, 1]. Such methods provide sufficiently accurate results but
rely on wires tethered to the user’s body or to specific interaction devices, with all the
aforementioned problems. We aim to develop a purely vision-based architecture that
facilitates unencumbered 3D interaction.

With vision-based 3D tracking techniques, the first issue is to determine what in-
formation in the camera image is relevant – that is, which regions represent the user’s
hand or arm. What makes this difficult is the variation in user clothing or skin color
and background activity. Previous approaches on vision-based gesture recognition used
marked gloves [8], infrared cameras [22], or a combination of multiple feature chan-
nels, like color and stereo [12] to deal with this problem, or they just restricted their
system to a uniform background [33]. By analyzing a shadow image, this task can be
greatly simplified.

Most directly related to our approach, Segen and Kumar [24] derive 3D position
and orientation information of two fingers from the appearance of the user’s hand and
its shadow, co-located in the same image. However, since their approach relies on vis-
ible light, it requires a stationary background and thus cannot operate on a highly dy-

� ��

� ��������������������������������

�

��������������
�������������
�������������
�������������
������������� �

�����������
���������
���������
���������
���������

�������
�������
����
����

��

��������������
�������������
�������������

�

���������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��

����������������������
���������������������
���������������������
���������������������
���������������������
���������������������
��������������������� ��������������������������

��
��
��
��

������
�����
��

������
�����

�
�
�
��

���
��
��

��
��
��
�������� �����

����
��
� ������������

�
�
��
��
��
�� ���������� ������������

����
���
����

IR Light

CameraDesk Surface

Camera Image

Sha dow

Calculated 3D Positions
��

�

������
������
������

��

�

����������������
����������������
����������������
����������������

��
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�

Fig. 4. Principle of pointing direction recovery.

namic back-projection surface like the one on our workbench. By using infrared light
for casting the shadow, we can overcome this restriction.

The use of shadows solves, at the same time, another problem with vision-based
architectures: where to put the cameras. In a virtual workbench environment, there are
only few places from where we can get reliable hand position information. One camera
can be set up next to the table without overly restricting the available space for users.
In many systems, in order to recover three dimensional information, a second camera
is deployed. However, the placement of this second camera restricts the usable area
around the workbench. Using shadows, the infrared camera under the projector replaces
the second camera. One of the infrared light sources mounted on the ceiling above the
user shines on the desk’s surface where it can be seen by the camera underneath (see
Figure 4). When users move an arm over the desk, it casts a shadow on the desk surface
(see Figure 2a). From this shadow, and from the known light-source position, we can
calculate a plane in which the user’s arm must lie.

Simultaneously, the second camera to the right of the table (Figures 3a and 4)
records a side view of the desk surface and the user’s arm. It detects where the arm
enters the image and the position of the fingertip. From this information, the computer
extrapolates two lines in 3D space on which the observed real-world points must lie. By
intersecting these lines with the shadow plane, we get the coordinates of two 3D points
– one on the upper arm, and one on the fingertip. This gives us the user’s hand position
and the direction in which the user is pointing. We can use this information to project
an icon representing the hand position and a selection ray on the workbench display.

Obviously, the success of the gesture-tracking capability relies heavily on how fast
the image processing can be done. Fortunately, we can make some simplifying assump-
tions about the image content. We must first recover arm direction and fingertip position
from both the camera and the shadow image. Since the user stands in front of the desk
and the user’s arm is connected to the user’s body, the arm’s shadow should always
touch the image border. Thus, our algorithm exploits intensity thresholding and back-
ground subtraction to discover regions of change in the image. It also searches for areas
in which these regions touch the desk surface’s front border (which corresponds to the

shadow image’s top border or the camera image’s left border). The algorithm then takes
the middle of the touching area as an approximation for the origin of the arm (Figures
2b and Figure 3b). Similar to Fukumoto’s approach [10], we trace the shadow’s con-
tour and take point farthest away from the shoulder as the fingertip. The line from the
shoulder to the fingertip reveals the arm’s 2D direction.

In our experiments, the point thus obtained was coincident with the pointing finger-
tip in all but a few extreme cases (such as the fingertip pointing straight down at a right
angle to the arm). The method does not depend on a pointing gesture, but also works for
most other hand shapes, including a hand held horizontally, vertically, or in a fist. These
shapes may be distinguished by analyzing a small section of the side camera image and
may be used to trigger specific gesture modes in the future.

The computed arm direction is correct as long as the user’s arm is not overly bent
(see Figure 3). In such cases, the algorithm still connects the shoulder and fingertip,
resulting in a direction somewhere between the direction of the arm and the one given by
the hand. Although the absolute resulting pointing position does not match the position
towards which the finger is pointing, it still captures the trend of movement very well.
Surprisingly, the technique is sensitive enough so that users can stand at the desk with
their arm extended over the surface and direct the pointer simply by moving their index
finger without any arm movement.

6.1 Limitations and Improvements

Figure 3b shows a case where segmentation based on color background subtraction in
an older implementation detected both the hand and the change in the display on the
workbench. Our new version replaces the side color camera with an infrared spotlight
and a monochrome camera equipped with an infrared-pass filter. By adjusting the angle
of the light to avoid the desk’s surface, the user’s arm is illuminated and made distinct
from the background. Changes in the workbench’s display do not affect the tracking.

One remaining problem results from the side camera’s actual location. If a user ex-
tends both arms over the desk surface, or if more than one user tries to interact with the
environment simultaneously, the images of these multiple limbs can overlap and merge
into a single blob. Consequently, our approach will fail to detect the hand positions and
orientations in these cases. A more sophisticated approach using previous position and
movement information could yield more reliable results, but at this stage we chose to
accept this restriction and concentrate on high frame rate support for one-handed in-
teraction. In addition, this may not be a serious limitation for a single user for certain
tasks. A recent study shows that for a task normally requiring two hands in a real en-
vironment, users have no preference for one versus two hands in a virtual environment
that does not model effects such as gravity and inertia [23].

7 3D Reconstruction

To complement the capabilities of the Perceptive Workbench, we want to be able to
insert real objects into the virtual world and share them with other users at different
locations (see Figure 5). An example application for this could be a telepresence or

Fig. 5. Real object inserted into the virtual world. The figure shows a reconstruction of the doll in
the foreground.

computer-supported collaborative work (CSCW) system. This requires designing a re-
construction mechanism that does not interrupt the interaction. Our focus is to provide
a nearly instantaneous visual cue for the object, not necessarily on creating a highly
accurate model.

Several methods reconstruct objects from silhouettes [26, 30] or dynamic shadows
[5] using either a moving camera or light source on a known trajectory or a turntable
for the object [30]. Several systems have been developed for reconstructing relatively
simple objects, including some commercial systems.

However, the necessity to move either the camera or the object imposes severe con-
straints on the working environment. Reconstructing an object with these methods usu-
ally requires interrupting the user’s interaction with it, taking it out of the user’s environ-
ment, and placing it into a specialized setting. Other approaches use multiple cameras
from different viewpoints to avoid this problem at the expense of more computational
power to process and communicate the results.

In this project, using only one camera and multiple infrared light sources, we ana-
lyze the shadows cast by the object from multiple directions (see Figure 6). Since the
process is based on infrared light, it can be applied independently of the lighting condi-
tions and with minimal interference with the user’s natural interaction with the desk.

To obtain the different views, we use a ring of seven infrared light sources in the
ceiling, each independently switched by computer control. The system detects when a
user places a new object on the desk surface, and renders a virtual button. The user can
then initiate reconstruction by touching this virtual button. The camera detects this ac-
tion, and in approximately one second the system can capture all of the required shadow
images. After another second, reconstruction is complete, and the newly reconstructed
object becomes part of the virtual world. Note that this process uses the same hardware
as the deictic gesture-tracking capability discussed in the previous section, and thus
requires no additional cost.

Figure 7 shows a series of contour shadows and a visualization of the reconstruction
process. By approximating each shadow as a polygon (not necessarily convex) [21], we

� ��

� ���

�������������
������������
������������
������������
������������
������������

�

�

����������
����������
����������
����������
����������
����������

��������
������������

���������
���������
���������

�����
�����
����

� ����

����

����
������������������
������������������
������������������
�������������������

�������

�����

�������

��
�
��
��

����������������
����������������
����������������
����������������

���������
��������
��������
��������

�

IR Light IR Light

D esk Surface

Object

Shadows

��
����������
����������

�����
����

�
��

������
������

��
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�

Fig. 6. Principle of the 3D reconstruction.

create a set of polyhedral “view cones” extending from the light source to the polygons.
The intersection of these cones creates a polyhedron that roughly contains the object.

Intersecting nonconvex polyhedral objects is a complex problem, further compli-
cated by numerous special cases. Fortunately, this problem has already been extensively
researched and solutions are available. For the intersection calculations in our applica-
tion, we use Purdue University’s TWIN Solid Modeling Library [7]. Recently, a highly
optimized algorithm has been proposed by Matusik et al. that can perform these in-
tersection calculations directly as part of the rendering process [17]. Their algorithm
provides a significant improvement on the intersection code we are currently using, and
we are considering it for a future version of our system.

Figure 8c shows a reconstructed model of a watering can placed on the desk’s sur-
face. We chose the colors to highlight the different model faces by interpreting the face
normal as a vector in RGB color space. In the original version of our software, we did
not handle holes in the contours. This feature has since been added by constructing light
cones for both the object contours and for those representing holes. By inspecting the
pixels adjacent to the outside of the contour, we can distinguish between the two types
of borders. Then, rather than intersecting the light cone with the rest of the object, we
perform a boolean differencing operation with the cones formed from the hole borders.

7.1 Limitations

An obvious limitation to our approach is that we are confined to a fixed number of dif-
ferent views from which to reconstruct the object. The turntable approach permits the
system to take an arbitrary number of images from different viewpoints. In addition, not
every nonconvex object can be exactly reconstructed from its silhouettes or shadows.
The closest approximation that can be obtained with volume intersection is its visual
hull, that is, the volume enveloped by all the possible circumscribed view cones. Even
for objects with a polyhedral visual hull, an unbounded number of silhouettes may be
necessary for an exact reconstruction [15]. However, Sullivan’s work [30] and our expe-
rience have shown that usually seven to nine different views suffice to get a reasonable
3D model of the object.

Fig. 7. Steps of the 3D reconstruction of the doll from Figure 5, including the extraction of contour
shapes from shadows and the intersection of multiple view cones (bottom).

Exceptions to this heuristic are spherical or cylindrical objects. The quality of re-
construction for these objects depends largely on the number of available views. With
only seven light sources, the resulting model will appear faceted. This problem can be
solved either by adding more light sources, or by improving the model with the help of
splines.

In addition, the accuracy with which objects can be reconstructed is bounded by
another limitation of our architecture. Since we mounted our light sources on the ceil-
ing, the system can not provide full information about the object’s shape. There is a
pyramidal blind spot above all flat, horizontal surfaces that the reconstruction can not
eliminate. The slope of these pyramids depends on the angle between the desk surface
and the rays from the light sources. Only structures with a greater slope will be recon-
structed entirely without error. We expect that we can greatly reduce the effects of this
error by using the image from the side camera and extracting an additional silhouette of
the object. This will help keep the error angle well below 10 degrees.

8 Performance Analysis

8.1 Object and Gesture Tracking

Both object and gesture tracking currently perform at an average of between 14 and 20
frames per second (fps). Frame rate depends on both the number of objects on the table
and the size of their reflections. Both techniques follow fast motions and complicated
trajectories.

To test latency, we measured the runtime of our vision code. In our current imple-
mentation, the object tracking code took around 43 ms to run with a single object on the
desk surface and scaled up to 60 ms with five objects. By switching from TCP to UDP,
we were able to reduce the network latency from a previous 100 ms to approximately

Cone Pyramid
Maximal Error 0.0215 (7.26%) 0.0228 (6.90%)

Mean Error 0.0056 (1.87%) 0.0043 (1.30%)
Mean Square Error 0.0084 (2.61%) 0.0065 (1.95%)

Table 1. Reconstruction errors averaged over three runs (in meters and percentage of object di-
ameter).

8 ms. Thus, our theoretical system latency is between 101 and 118 ms. Experimental
results confirmed these values.

For the gesture tracking, the results are in the same range since the code used is
nearly identical. Measuring the exact performance, however, is more difficult because
two cameras are involved.

Even though the system responsiveness (system latency plus display lag) exceeds
the envisioned threshold of 75 to 100 ms, it still seems adequate for most (navigational)
pointing gestures in our current applications. Since users receive continuous feedback
about their hand and pointing positions, and most navigation controls are relative rather
than absolute, users adapt their behavior readily to the system. With object tracking, the
physical object itself provides users with adequate tactile feedback. In general, since
users move objects across a very large desk, the lag is rarely troublesome in the current
applications.

Nonetheless, we are confident that some improvements in the vision code can fur-
ther reduce latency. In addition, Kalman filters may compensate for render lag and will
also add to the tracking system’s stability.

8.2 3D Reconstruction

Calculating the error from the 3D reconstruction process requires choosing known 3D
models, performing the reconstruction process, aligning the reconstructed model and
the ideal model, and calculating an error measure. For simplicity, we chose a cone and
pyramid. We set the centers of mass of the ideal and reconstructed models to the same
point in space, and aligned their principal axes.

To measure error, we used the Metro tool developed by Cignoni, Rocchini, and
Scopigno [4]. It approximates the real distance between the two surfaces by choosing a
set of 100,000 to 200,000 points on the reconstructed surface, then calculating the two-
sided distance (Hausdorff distance) between each of these points and the ideal surface.
This distance is defined as max(E(S1; S2); E(S2; S1)) with E(S1; S2) denoting the
one-sided distance between the surfaces S1 and S2:

E(S1; S2) = max
p2S1

(dist(p; S2)) = max
p2S1

(min
p02S2

(dist(p; p0))) (2)

The Hausdorff distance corresponds directly to the reconstruction error. In addition
to the maximum distance, we also calculated the mean and mean-square distances. Ta-
ble 1 shows the results. In these examples, the relatively large maximal error was caused
by the difficulty in accurately reconstructing the tip of the cone and the pyramid.

Improvements may be made by precisely calibrating the camera and lighting sys-
tem, adding more light sources, and obtaining a silhouette from the side camera to
eliminate ambiguity about the top of the surface. However, the system meets its goal
of providing virtual presences for physical objects in a timely manner that encourages
spontaneous interactions.

8.3 User Experience

To evaluate the current usability of the system, we performed a small user study with the
goal of determining the relative efficiency and accuracy of the object tracking capability.
We designed a task that required users to drag virtual balls of various sizes to specified
locations on the table’s surface with the help of physical “cursor” objects. The system
recorded the time required to complete the task of correctly moving four such balls.

Although the number of participants was too small to yield significant quantitative
results, we discovered several common problems users had with the interface. The main
difficulties arose from selecting smaller balls, both because of an imprecise “hot spot”
for physical interactors, and because the physical object occluded its virtual represen-
tation. By designing a context-sensitive “crosshair” cursor that extended beyond the
dimensions of the physical object, we were able to significantly increase performance
in those cases. In the future, we plan to conduct a more thorough user study, with more
participants, that also measures the usability of the gesture tracking subsystem.

9 Putting It to Use: Spontaneous Gesture Interfaces

All the components of the Perceptive Workbench – deictic gesture tracking, object
recognition, tracking, and reconstruction – can be seamlessly integrated into a single,
consistent framework. The Perceptive Workbench interface detects how users want to
interact with it and automatically switches to the desired mode.

When users move a hand above the display surface, the system tracks the hand and
arm as described in Section 6. A cursor appears at the projected hand position on the
display surface, and a ray emanates along the projected arm axis. These can be used in
selection or manipulation, as in Figure 8a. When users place an object on the surface,
the cameras recognize this and identify and track the object. A virtual button also ap-
pears on the display (indicated by the arrow in Figure 8b). By tracking the reflections
of objects near the table surface, the system determines when the hand overlaps the
button, thus selecting it. This action causes the system to capture the 3D object shape,
as described in Section 7.

Since shadows from the user’s arms always touch the image border, it is easy to
decide whether an object lies on the desk surface. If the system detects a shadow that
does not touch any border, it can be sure that an object on the desk surface was the
cause. As a result, the system will switch to object-recognition and tracking mode.
Similarly, the absence of such shadows, for a certain period, indicates that the object
has been taken away, and the system can safely switch back to gesture-tracking mode.
Note that once the system is in object-recognition mode, it turns off the ceiling lights,
and activates the light sources underneath the table. Therefore users can safely grab and

Fig. 8. (a) Pointing gesture with hand icon and selection ray; (b) Virtual button rendered on the
screen when object is detected on the surface; (c) Reconstruction of this watering can.

Fig. 9. Applications: (a) Two game masters controlling virtual monsters; (b) Terrain navigation
using deictic gestures; (c) A virtual instantiation of the workbench.

move objects on the desk surface, since their arms will not cast any shadows that could
disturb the perceived object contours.

These interaction modes provide the elements of a perceptual interface that operates
without wires and without restrictions on the objects. For example, we constructed a
simple application where the system detects objects placed on the desk, reconstructs
them, and then places them in a template set where they are displayed as slowly rotating
objects on the workbench display’s left border. Users can grab these objects, which can
act as new icons that the user can attach to selection or manipulation modes or use as
primitives in a model building application.

An Augmented Reality Game We created a more elaborate collaborative interface
using the Perceptive Workbench in an augmented reality game. Two or more game
masters can communicate with a person in a separate space wearing an augmented
reality headset (Figure 9a). The workbench display surface acts as a top-down view
of the player’s space. The game masters place different objects which appear to the
player as distinct monsters at different vertical levels in the game space. While the
game masters move the objects around the display surface, this motion is replicated by
monsters in the player’s view, which move in their individual planes. The player’s goal
is to defeat these monsters by performing Kung Fu gestures before they can reach him.
For a more detailed description of this application, see Starner et al. [27, 16].

3D Terrain Navigation A second application uses the Perceptive Workbench’s deictic
gesture tracking capability to interface with the VGIS global terrain navigation system
[37]. Users choose the direction of navigation by pointing and can change the direction
continuously (Figure 9b). Moving the hand toward the display increases the speed to-
ward the earth and moving it away increases the speed away from the earth. Panning and
rotating can be accomplished by making lateral gestures in the direction to be panned or
by making a rotational arm gesture. Currently, users choose these three modes by keys
on a keyboard attached to the workbench, while the extent of the action is determined
by deictic tracking. We are experimenting with a system where the modes are selected
via gesture.

Telepresence and CSCW As another application of the Perceptive Workbench, we
built a simple telepresence system. Using the sample interaction framework described
at the beginning of this section, users can point to any location on the desk, reconstruct
objects, and move them across the desk surface. All of their actions are immediately
applied to a VR model of the workbench mirroring the current state of the real desk
(Figure 9c). Thus, when performing deictic gestures, the current hand and pointing po-
sition appear on the model workbench as a red selection ray. Similarly, the reconstructed
shapes of objects on the desk surface are displayed at the corresponding positions in the
model. This makes it possible for coworkers at a distant location to follow the user’s
actions in real-time, while having complete freedom to choose a favorable viewpoint.

10 Future Work

Many VR systems use head-tracked shutter glasses and stereoscopic images to get a
more immersive effect. In order to make these systems fully wireless, we need to ap-
ply vision-based methods to also track the user’s head. At present, we are researching
inexpensive and robust ways to do this that still meet the performance criteria. Results
from Ware and Balakrishnan [36] suggest that, in contrast to fully immersive systems
where users wear a head-mounted display and relatively small head rotations can cause
large viewpoint shifts, semi-immersive systems do not impose such high restrictions on
head-movement latency. In fact, since the head position is much more important than
the head orientation in these systems, latency can even be slightly larger than with the
gesture and object tracking.

In addition, we will work on improving the latency of the gesture-rendering loop
through code refinement and the application of Kalman filters. For the recognition of
objects on the desk’s surface, we will explore the use of statistical methods that can give
us better ways of handling uncertainties and distinguishing new objects. We will also
employ hidden Markov models to recognize symbolic hand gestures [28] for controlling
the interface. Finally, as hinted by the multiple game masters in the gaming application,
several users may be supported through careful, active allocation of resources.

11 Conclusion

The Perceptive Workbench uses a vision-based system to enable a rich set of interac-
tions, including hand and arm gestures, object recognition and tracking, and 3D recon-
struction of objects placed on its surface. Latency measurements show that the Percep-
tive Workbench’s tracking capabilities are suitable for real-time interaction.

All elements combine seamlessly into the same interface and can be used in various
applications. In addition, the sensing system is relatively inexpensive, using standard
cameras and lighting equipment plus a computer with one or two video digitizers, de-
pending on the functions desired. As seen from the multiplayer gaming, terrain naviga-
tion, and telepresence applications, the Perceptive Workbench encourages an untethered
and spontaneous interface that encourages the inclusion of physical objects in the virtual
environment.

Acknowledgements

This work is supported in part by funding from Georgia Institute of Technology’s
Broadband Institute. We thank Brad Singletary, William Ribarsky, Zachary Wartell,
David Krum, and Larry Hodges for their help building the Perceptive Workbench and
interfacing it with the applications mentioned above. We also thank Brygg Ullmer, Jun
Rekimoto, and Jim Davis for their discussions and assistance. In addition we thank Paul
Rosin and Geoff West for their line segmentation code, the Purdue CADLab for TWIN,
and Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno for Metro.

References

1. O. Bimber. Gesture controlled object interaction: A virtual table case study. In 7th Int’l
Conf. in Central Europe on Computer Graphics, Visualization, and Interactive Digital Media
(WSCG’99), volume 1, Plzen, Czech Republic, 1999.

2. A. Bobick, S. Intille, J. Davis, F. Baird, C. Pinhanez, L. Campbell, Y. Ivanov, and A. Wilson.
The kidsroom: A perceptually-based interactive and immersive story environment. PRES-
ENCE: Teleoperators and Virtual Environments, 8(4):367–391, August 1999.

3. R. Bolt and E. Herranz. Two-handed gesture in multi-modal natural dialogue. In ACM
Symposium on User Interface Software and Technology (UIST’92), pages 7–14, 1992.

4. P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring error on simplified surfaces.
Computer Graphics Forum, 17(2):167–174, June 1998.

5. D. Daum and G. Dudek. On 3-d surface reconstruction using shape from shadows. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’98), pages 461–468, 1998.

6. J.W. Davis and A.F. Bobick. Sideshow: A silhouette-based interactive dual-screen environ-
ment. Technical Report TR-457, MIT Media Lab Tech Report, 1998.

7. Computer Aided Design and Graphics Laboratory (CADLAB). TWIN Solid Model-
ing Package Reference Manual. School of Mechanical Engineering, Purdue University,
http://cadlab.www.ecn.purdue.edu/cadlab/twin, 1995.

8. K. Dorfmueller-Ulhaas and D. Schmalstieg. Finger tracking for interaction in augmented
environments. Technical Report TR-186-2-01-03, Vienna University of Technology, 2001.
submitted to Computer Graphics Forum.

9. G.W. Fitzmaurice, H. Ishii, and W. Buxton. Bricks: Laying the foundations for graspable
user interfaces. In Proceedings of CHI’95, pages 442–449, 1995.

10. M. Fukumoto, K. Mase, and Y. Suenaga. Real-time detection of pointing actions for a glove-
free interface. In Proceedings of IAPR Workshop on Machine Vision Applications, Tokyo,
Japan, 1992.

11. H. Ishii and B. Ullmer. Tangible bits: Towards seamless interfaces between people, bits, and
atoms. In Proceedings of CHI’97, pages 234–241, 1997.

12. C. Jennings. Robust finger tracking with multiple cameras. In Proc. of the International
Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Sys-
tems, pages 152–160, 1999.

13. M. Krueger. Artificial Reality II. Addison-Wesley, 1991.
14. W. Krueger, C.-A. Bohn, B. Froehlich, H. Schueth, W. Strauss, and G. Wesche. The respon-

sive workbench: A virtual work environment. IEEE Computer, 28(7):42–48, July 1995.
15. A. Laurentini. How many 2d silhouettes does it take to reconstruct a 3d object? Computer

Vision and Image Understanding (CVIU), 67(1):81–87, July 1997.
16. B. Leibe, T. Starner, W. Ribarsky, Z. Wartell, D. Krum, B. Singletary, and L. Hodges. To-

ward spontaneous interaction with the perceptive workbench. IEEE Computer Graphics &
Applications, 20(6):54–65, Nov. 2000.

17. W. Matusik, C. Buehler, S. Gortler, R. Raskar, and L. McMillan. Image based visual hulls.
In Proceedings of SIGGRAPH 2000, 2000.

18. F.K.H. Quek. Eyes in the interface. Image and Vision Computing, 13(6):511–525, Aug.
1995.

19. J.M. Rehg and T. Kanade. Visual tracking of high dof articulated structures: an application
to human hand tracking. In Third European Conference on Computer Vision (ECCV’94),
pages 35–46, 1994.

20. J. Rekimoto and N. Matsushita. Perceptual surfaces: Towards a human and object sensitive
interactive display. In Workshop on Perceptual User Interfaces (PUI’97), 1997.

21. P.L. Rosin and G.A.W. West. Non-parametric segmentation of curves into various representa-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(12):1140–1153,
1995.

22. Y. Sato, Y. Kobayashi, and H. Koike. Fast tracking of hands and fingertips in infrared images
for augmented desk interface. In Proc. of the Fourth IEEE International Conference on
Automatic Face and Gesture Recognition, pages 462–467, 2000.

23. A.F. Seay, D. Krum, W. Ribarsky, and L. Hodges. Multimodal interaction techniques for the
virtual workbench. In Proceedings CHI’99 Extended Abstracts, pages 282–283, 1999.

24. J. Segen and S. Kumar. Shadow gestures: 3d hand pose estimation using a single camera. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’99), volume 1, pages
479–485, 1999.

25. R. Sharma and J. Molineros. Computer vision based augmented reality for guiding manual
assembly. PRESENCE: Teleoperators and Virtual Environments, 6(3):292–317, 1997.

26. S.K. Srivastava and N. Ahuja. An algorithm for generating octrees from object silhouettes in
perspective views. Computer Vision, Graphics, and Image Processing: Image Understanding
(CVGIP:IU), 49(1):68–84, 1990.

27. T. Starner, B. Leibe, B. Singletary, and J. Pair. Mind-warping: Towards creating a compelling
collaborative augmented reality gaming interface through wearable computers and multi-
modal input and output. In IEEE International Conference on Intelligent User Interfaces
(IUI’2000), 2000.

28. T. Starner, J. Weaver, and A. Pentland. Real-time american sign language recognition us-
ing desk and wearable computer based video. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(12):1371–1375, 1998.

29. D. Sturman. Whole-hand Input. PhD thesis, MIT Media Lab, 1992.
30. S. Sullivan and J. Ponce. Automatic model construction, pose estimation, and object recog-

nition from photographs using triangular splines. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(10):1091–1097, 1998.

31. B. Ullmer and H. Ishii. The metadesk: Models and prototypes for tangible user interfaces.
In ACM Symposium on User Interface Software and Technology (UIST’97), pages 223–232,
1997.

32. J. Underkoffler and H. Ishii. Illuminating light: An optical design tool with a luminous-
tangible interface. In Proceedings of CHI’98, pages 542–549, 1998.

33. A. Utsumi and J. Ohya. Multiple-hand-gesture tracking using multiple cameras. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’99), volume 1, pages 473–
478, 1999.

34. R. van de Pol, W. Ribarsky, L. Hodges, and F. Post. Interaction in semi-immersive large
display environments. In Proceedings of Virtual Environments’99, pages 157–168, 1999.

35. C. Vogler and D. Metaxas. Asl recognition based on coupling between hmms and 3d motion
analysis. In Sixth International Conference on Computer Vision (ICCV’98), pages 363–369,
1998.

36. C. Ware and R. Balakrishnan. Reaching for objects in vr displays: Lag and frame rate. ACM
Transactions on Computer-Human Interaction, 1(4):331–356, 1994.

37. Z. Wartell, W. Ribarsky, and L.F. Hodges. Third-person navigation of whole-planet terrain
in a head-tracked stereoscopic environment. In IEEE Virtual Reality ’99 Conference, pages
141–149, 1999.

38. B. Watson, N. Walker, W. Ribarsky, and V. Spaulding. The effects of variation of system
responsiveness on user performance in virtual environments. Human Factors, 40(3):403–
414, 1998.

39. P. Wellner. Interacting with paper on the digital desk. Communications of the ACM,
36(7):86–89, 1993.

40. C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time tracking of the
human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):780–
785, 1997.

