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Abstract

An efficient and general framework for the incorporation of statistical prior
information, based on a wide variety of detectable point features, into level
set based object tracking is presented. Level set evolution is based on the
maximisation of a set of likelihoods on mesh values at features, which are
located using a stochastic sampling process. This evolution is based on the
interpolation of likelihood gradients using kernels centred at the features.
Feature detectors implemented are based on moments of colour histogram
segmented images and learned image patches located using normalised corre-
lation, although a wide variety of feature detectors could be used. A compu-
tationally efficient level set implementation is presented along with a method
for the incorporation of a motion model into the scheme.

1 Introduction

Level Set methods (or ‘Geodesic Active Contours’) [13, 8, 7] are becoming increasingly
popular tools for the segmentation of medical images and volumes. Such techniques are
based on modelling an evolving surface. The dynamics of these surfaces are defined based
on image/volume data. Such methods are less popular in the area of object tracking and
dynamic scene analysis, with more conventional parametric models such as snakes [6] or
Active Shape/Appearance Models [3] being favoured. There are two possible reasons for
this lack of popularity; The computational cost of level set methods and the difficulty in
incorporating prior information in the level set framework. The computational problem
can be overcome using multi-scale approaches [12] and approximate methods such as
narrow banding and fast marching [13]. The problem of incorporating shape, appearance,
and other priors has also been tackled (e.g. [7, 8]). Against these disadvantages the
disadvantages of parametric methods must be weighed. The principal disadvantage of
parametric methods is the definition of the parameterisation. This is always a trade-off
between generality and specificity. This is often a tough trade-off if there is large variation
within the data class of interest, and it is often not possible to represent valid members of
the class and possible to represent invalid members of the class.

In this paper an efficient and general framework for incorporating prior information
into level set based object tracking is presented. This is based around a feature driven
level set method, where the evolution of the level set mesh is based on probabilistic priors
on the location of, and level set mesh values relating to, detected features. The nature
of the features used in this framework is constrained only by the fact that priors on level



set mesh values relate to a single point for each feature. Features could be based on
appearance, edges, colour, shape, texture, wavelet decomposition etc. etc. In our imple-
mentation we have used features based on moments of a binary image segmented using a
(HSV) colour histogram, Learned image patches identified using normalised correlation
and shape features which use no image information (see section 5). An efficient level set
mesh approximation method is presented and a method for the incorporation of a motion
model is also presented.

2 Background: Level Sets, Priors and Object Tracking

Level set methods [13] are a type of finite element approach used for the modelling of
evolving curves or surfaces. These methods have been widely used in the fields of fluid
mechanics and material science for some time and are popular within the field of machine
vision for segmentation problems (e.g. [10]). The principal idea behind level set methods
is the definition of a static, evenly spaced mesh in an image or volume space. The values
at each point on the mesh relate to the proximity of the mesh point to an evolving curve or
surface with the ‘level set of zero’ defining the location of the curve or surface (this can
be thought of as like a contour line on a map). Mesh points contained within the evolving
surface are given negative values and mesh points outside the surface are given positive
values. A ‘speed function’ for the movement of the curve or surface is defined and mesh
values are updated (from an initial value) using a discrete time finite element update as
described in equation 1.

ψt+1 +F|�ψt | = 0 (1)

Where ψt is the matrix of mesh values at time t, F is a speed function and � is a
suitable spatial difference operator. The definition of the speed function F is crucial to
the operation of the method. Recently Leventon et al. [7, 8] have tried to re-pose level
set mesh evolution as the optimisation of a probabilistic likelihood function (based on a
learned prior probability distribution) with respect to observed data. In such cases F is
defined as a local differential that will maximise this probability. The applications de-
scribed are in the domain of medical volume segmentation using priors on shape and im-
age edge/gradient strength [8] and intensity and curvature [7]. In [8] shape is represented
by the mean and distribution of the mesh values (using Principal Components Analysis)
which are translationally and rotationally normalised. This is essentially an Eigenimage
[14]. The computational (and other) problems of the Eigenimage approach are well un-
derstood, which makes them a poor choice for an on-line tracking application such as
ours.

Paragios and Deriche [12] present a level set based system for object tracking using
inter-frame difference images. The aim is to classify pixels as foreground or background
based on priors relating to the difference image and mesh values at local neighbourhoods.
No shape or appearance prior information is included in this scheme.

In this paper we propose a framework to include arbitrary shape and appearance in-
formation priors into a level set based object tracking system, by encoding these priors as
distributions relating to expected mesh values at detected ‘features’ (localised configura-
tions of the image or level set mesh). This framework could also potentially be applied to
image/volume segmentation, however this is beyond the scope of this paper.



3 Feature Driven Level Sets

In this section a general ‘feature based’ framework for incorporating statistical priors into
Level Set mesh evolution/update is presented. This work differs from previous work on
incorporating priors into Level set evolution, in that priors are distributions relating to
expected (interpolated) mesh values at detected features (which may lie at any point on
or off the zero level set), rather than functions based on zero level set points [7] (and their
neighbourhoods) or priors on the set of level set mesh values themselves [8].

In our implementation features in an image are identified by a stochastic sampling
process (section 3.1), although any appropriate search strategy may be used within this
framework. Identified features have an associated prior probability distribution on the
value of the level set mesh at their location which relates to the particular feature/feature
type located. Ideally this is learned from segmented training data (section 6). We ap-
proximate this prior as a 1D Gaussian distribution, however any suitable distribution (that
is easily differentiable) could be used. From the prior and the current mesh value at the
feature a mesh probability gradient ( dP(ψ)

dN ) may be defined along the mesh normal at the
feature:

dP(ψ)
dN

≈ dP(ψ)
dψ

×1 =
dP(ψ)

dψ
(2)

The approximation given by equation 2 is valid as the relationship between the mesh
value (ψ) and the distance along the normal (N) is approximately linear with a unit scale
factor. In the general case mesh normals may be estimated from the mesh (see [13],
page 70). However, for near circular objects, such as the human head, the vector from
the centroid of the object to the feature is a computationally more efficient measure to
calculate and, in addition, is less sensitive to local noise that the mesh based normals.
The number of steps required to update the mesh to the mean of P(ψ) for feature n is
calculated as:

Sn = (ψ̄n −ψx,y)/
dP(ψx,y)

dψ
(3)

To update the level set mesh the probability differentials (projected into the normal
direction of the zero level set point) are interpolated at the zero level set points using
Kernels (Kn(ψ)) centred at the features:

Fm =
∑Nf

n=1
Kn(ψm) dP(ψn)

dNn
(Nn ·Nm)

∑Nf
n=1

Kn(ψm)

∑Nf
n=1

Sn

Nf
(4)

Where (Nn · Nm) is the dot product of the unit normal at feature n with the unit
normal at zero level set point m (clipped above zero). We use a kernel of Kn(ψ) =
k/(k + |ψ − ψ̄n|) for this interpolation, although different interpolating kernels have not
been widely explored. To ensure a smooth mesh evolution Fm is limited to 1 standard
deviation above/below the mean over all zero level set points. Mesh values are updated
using the value of Fm from the nearest zero level set point as is standard (equation 1).
Note: The level set mesh need not have the same resolution as the image. If resolutions
differ locations and mesh values must be scaled using a linear factor (we use a 320x240
image resolution and a 160x120 mesh resolution).



3.1 Location of ‘Features’ Using Stochastic Sampling

Given we have a set of ‘feature detectors’ (section 5), that are essentially binary point clas-
sifiers, an efficient search procedure is required to locate instances of these ‘features’ in a
novel image. As stochastic search procedures are currently widely used for this purpose,
and generally regarded to have acceptable performance, (e.g. the Condensation algorithm
[5]) we have taken this approach in our implementation. However, our architecture does
not preclude alternative search methods such as hill climbing / gradient ascent/descent [2]
or Levenberg-Marquardt optimisation [4] if a feature detector suits them more (they do
not for our classifiers).

Our method is as follows:

• Select a feature n to locate from an occurrence prior distribution Pocc(n)

• Sample a single location of this feature based on a location prior Plocn

• If the feature is located add this feature (and it’s location) to a list of feature in-
stances used to update the level set

• Reduce the prior occurrence probability of Pocc(n) by multiplying by a constant
factor Kp (and re-normalising the distribution)

• Repeat until a fixed no. of features have been found or a fixed number of iterations
have passed

4 An Efficient Level Set Mesh Representation for Object
Tracking

Level set based methods, in general, are not highly computationally efficient, as calcu-
lations must be performed over all points on a fixed mesh. This is a disadvantage for
on-line tracking applications. In image analysis applications mesh values usually relate
to pixels (or Voxels in the case of 3D data), which can lead to relatively large mesh sizes.
In order to combat this problem narrow band and fast marching approximations to level
set methods have been developed (see [13]). Narrow band methods only calculate mesh
values that are close to the zero level set and fast marching methods calculate mesh value
approximations by working outwards from the zero level set. For the narrow band method
mesh points not evaluated at the time of level set evolution are simply marked as such.
If these values are required at a later stage (as in our system) they must be calculated as
+/- the distance from the nearest zero level set point (as in the standard update), or ap-
proximated as the distance from the nearest calculated level set mesh point. Either option
requires a search to determine which is the nearest zero level set point or calculated mesh
point, which is a computationally expensive operation when repeated numerous times.

Our alternative approach to narrow band and fast marching methods is in fact an ap-
proximation to a narrow band method, however the narrow band is defined as a rectangular
area around the zero level set (figure 1), rather than an exact narrow band. We shall refer
to this as the ‘local mesh’. This method requires marginally more mesh points to be eval-
uated than a true narrow band method, however it allows uncalculated mesh points to be
estimated using a simple lookup and distance calculation as illustrated in figure 1 (a much
more efficient procedure).



Figure 1: Interpolation of non local mesh values

Non local mesh values may be approximated (as and when needed) as the value of the
nearest local mesh point (a simple lookup operation) plus the distance from the non local
mesh point to this mesh point. After each level set mesh update (move or feature update)
the scope of the local mesh values (min/max x,y) to be explicitly calculated is revised,
with uncalculated columns or rows of mesh values estimated from their neighbours using
the non local mesh approximation described. The scope is increased or decreased in each
direction until all the mesh values in the rows/columns directly outside the scope would
be above a maximum level set value (ψmax) and at least one of the mesh values in the
rows/columns directly inside the scope is below ψmax. The choice of ψmax depends on the
magnitude of the change in level set mesh values at each step, ψmax should be larger than
the largest of these (typically we use ψmax = 5). An identical approach could be taken to
the interior of the object, however it has not currently proved necessary to implement this.

4.1 Level Set Motion Based Update

Most successful object trackers include a dynamic/motion model and a method for in-
corporating this into the spatial estimation process. Our implementation is no exception.
Perhaps the most commonly used motion model is the Kalman filter (see for example
[2]). This can estimate future position/configuration (or derivatives of these) based on
past values and a fixed motion model (e.g. constant velocity, constant acceleration etc.).
We take an alternative approach of estimating velocity from a separate process using the
current and previous frame only. This is achieved by calculating the centroid of a binary
image segmented using a colour histogram method (required for our Colour Histogram
Moment Features, section 5.1). Although the centroid of this image is not an accurate
estimate of the centroid of the face, the differential of this centroid over time is a very
accurate estimate of the differential of the true face centroid. This is due to the fact there
is very little shape change (due to pose change, lighting etc.) from one frame to the next.
This method of velocity estimation greatly outperforms the Kalman filter in our scenario,
as a single fixed motion model assumption is far from accurate. However, this approach
is far from globally applicable, as it relies on a single object of distinctive colour being
tracked. This motion model could easily be replaced with another motion model (such as
the Kalman filter) within our framework. Once a motion estimate is obtained the Level
set mesh can simply be updated using the following equation:



ψx,y,new = ψx−dx,y−dy,old (5)

Whereψx,y represents the level set mesh values, and dx,dy is the estimated object velocity.
It should be noted that if the velocity exceeds the maximum level set value (ψmax in section
4) care must be taken to preserve an accurate representation of the object shape in the level
set mesh values. This is because the set of values ψx−dx,y−dy,old for all mesh points x,y
within the explicitly estimated local mesh may lie completely outside the object for larger
dx,dy (i.e. the local mesh then represents only an area where the object is not present).
Solutions to this are i) Performing the update in smaller steps, ii) Moving the scope of the
explicitly calculated level set mesh values w.r.t. the estimated velocity. Of these ii) is the
least computationally intensive.

5 Feature Learning and Selection

The framework presented within this paper allows for the inclusion of arbitrary types
(and numbers) of feature detectors. In this context a feature detector is any algorithm
that can locate a point within an image that relates to a salient feature (e.g. a human eye
in our chosen example). Within the scope of the sampling scheme described in section
3.1 feature detectors are binary point classifiers that give a positive output if a feature is
believed to be present. The following sections describe a number of feature detectors that
we have implemented.

5.1 Colour Histogram Moment Features

This feature detector is based on a binary image formed using a colour histogram con-
structed from skin coloured patches. It has been widely observed (see for example [11])
that pixels relating to skin form a compact region in colourspace, in particular in the nor-
malised HSV (Hue-Saturation-Value) colourspace we use. It should be noted that colour
values with particularly high or low brightness (V) values provide unreliable colour in-
formation and are discarded in the training phase. Pixels are classified as skin colour if
the probability of the histogram bin relating to the pixel colour is greater than a threshold
value.

Figure 2: Skin coloured pixels classified using a HSV histogram

From figure 2 it can be seen that the colour histogram method does a reasonable
job of classifying skin/non-skin pixels, although there is some mis-classification of hair
and clothing. The neck area is also classified as skin (as would be expected) if visible.
Normalised moments (about the x or y axes) may be calculated as:

Mx(x) =
∑S

n=−SCx,y+n ×n

∑S
n=−S |n|

, My(y) =
∑S

n=−SCx+n,y ×n

∑S
n=−S |n|

(6)

Where Cx,y is the binary classification of pixel x,y (1=skin, 0=not skin), and S is the
scope/range of the moment (in the range of 10-50 pixels in our examples). To form binary



classifier, which may be used as a feature detector, upper and lower limits are put on the
value of the moment (typically separated by only a small constant e.g. 0.05). If the
moment around a given pixel is between these limits then the feature is present. This
feature detector is useful for identifying the top, middle and sides of a face.

5.2 Normalised Correlation Features

A set of correlation kernels based on image patches is learned using a method inspired by
the work of Agarwal and Roth [1]. From a set of example images (around 15-20 examples
each of 10 individuals) and corresponding segmentations (from an early version of the
tracker) image patches (lying within the segmentation) of size 9× 9 pixels are extracted
centred at locations identified using the Harris interest point detector. Starting with each
patch as a separate cluster, agglomerative clustering is performed: the two most similar
clusters C1 and C2 are merged as long as the average similarity between their constituent
patches (and thus the cluster compactness) stays above a certain threshold t:

similarity(C1,C2) =
∑p∈C1,q∈C2

NGC(p,q)

|C1|× |C2|
> t, (7)

Where the similarity between two patches is measured by Normalised Greyscale Cor-
relation (NGC).

NGC(p,q) =
∑i(pi − pi)(qi −qi)√
∑i(pi − pi)2∑i(qi −qi)2

(8)

This clustering scheme guarantees that only those patches which are visually similar
are grouped, and that the resulting clusters stay compact. For each resulting cluster, we
compute the cluster centre for use as a correlation kernel. Kernels with frequency of
occurrence above a threshold and (normalised) location standard deviation below a second
threshold are selected as ‘salient kernels’ (figure 3).

Figure 3: 9x9 Correlation Kernels Learned and Selected

A feature detector is formed by performing normalised correlation of an image patch
with these kernels at a point of interest. If the correlation value is above a threshold (we
use 0.4) the feature is determined to be present.

5.3 Shape Prior (Featureless) Features

Shape prior features differ from the other features described, in that their outputs are not
a function of the input image. Essentially shape prior features are a binary classifier that
always detects the presence of a feature. The location of these features is a function of i)
Learned position (a Gaussian distribution relating to the scale and positional normalised
feature position), and ii) Scale and Object Centroid Location estimated from other features
and the level set as:

Cxy =
1

Nlsp

Nlsp

∑
n=1

Lxy(n) (9)

Where Cxy is the estimated centroid, Lxy(n) is the location of zero level set point n, and
Nlsp is the number of zero level set points.



Sc =
1

Ns f

Ns f

∑
n=1

Sest(n) (10)

Where Sc is the estimated scale, Ns f is the number of features at previous timestep provid-
ing scale estimates, and Sest(n) is the scale estimate from feature n. The scale estimates
Sest(n) are estimated from the relative location of the feature and the mean of its location
prior:

Sest(n) =
|Fxy(n)−Cxy|

|δ̄xy(n)| (11)

Where Fxy(n) is the location of instance of feature n and δ̄xy(n) is the mean offset from
the centroid of feature n (at scale 1). In fact the estimated scale and centroid are used in
the same way to determine sample location for all features in our implementation.

6 Learning Priors for Features

Priors required by the system fall into three categories; i) feature Level-set mesh value
priors, ii) feature occurrence priors and iii) feature location priors.

Two elements are required in order to learn priors relating mesh values at features; i) A
set of example feature locations, ii) a set of corresponding ‘correct’ level sets. If these are
available it is simply a matter of taking the statistics (e.g. mean and standard deviation for
a Gaussian approximation) of the mesh values for each feature. In general we have neither
feature locations nor correct level sets, so these must be obtained. Features are obtained
using a tracker bootstrapping process, in which mesh, occurrence and location priors for
features are set to sensible (but very general) defaults by hand. The tracker (described in
sections 3 and 4) is then run to obtain feature locations over a set of images/frames. The
correct level sets are obtained from binary hand segmentations of example images/frames
containing faces. To form a ‘correct’ level set mesh an initial level set is created with
mesh values of -1 assigned to mesh values relating to segmented (face) pixels, and values
of 1 assigned to mesh values relating to non-segmented (background) pixels. From this
initial mesh a set of zero level set points, which lie on the edges between mesh points, can
be found by linear interpolation in the standard way (see [13]). From these zero level set
points each level set mesh point can be re-estimated as +/- the distance from the nearest
zero level set point (in the standard way):

ψx,y, f inal =
N

min
n=1

(dist([x,y], [Fn,x,Fn,y]))× sign
(
ψx,y,initial

)
(12)

Where ψx,y is the mesh value at x,y, and Fn,x,Fn,y is the location of feature n. Given the
feature locations (w.r.t. the tracked centroid and estimated scale), and correct mesh values
statistics (means and standard deviations) can be gathered to form location and mesh value
priors. The relative frequency of occurrence of features could also be used to estimate the
occurrence priors, however in the implemented system a uniform prior is used.

7 Results and Evaluation

Figure 4 illustrates the tracker in operation.



Figure 4: Tracked Sequence Showing Level Set and Features Located (5 frame / 0.5s
intervals)

A qualitative evaluation of the tracker using live input (USB webcam) was carried out.
11 users were asked to use the system for 2-3 minutes with little instruction. Positional
tracking was maintained for all subjects over this period (tracking at around 5-6 fps). The
quality of the segmentation could not be measured objectively from this experiment, so
movies were taken of two subjects at random and hand segmentations performed at 0.5s
(5 frame) intervals for a number of seconds. The results of this quantitative evaluation are
presented in figure 5.

Tracker vs. G.T. Area Overlap G.T. vs. Tracker Area Overlap
0.96 [s.d. 0.03] 0.76 [s.d. 0.05]

Figure 5: Comparison of Tracker output to Ground Truth (G.T.)

Figure 5 illustrates that the ability of the tracker to segment the face is near perfect (il-
lustrated by the 0.96 tracker to ground truth overlap). However, there is over-segmentation
(illustrated by the 0.76 ground truth to tracker overlap). This equates to an average error
of around 3 to 4 pixels at the perimeter at 320x240 image resolution. The small standard
deviations of both metrics indicate this error is more systematic than random, which is
encouraging from a systems point of view. This error is largely related to the different
shapes of faces in the training and test data, which results in this systematic error.

8 Discussion and Future Work

The example on-line system implemented performs face location/segmentation/tracking
at around 5-6 fps on a PIII 1GHz, which is sufficient to maintain on-line tracking (from
a camera input) for extended periods of time. Segmentation performance is qualitatively
good, with a small (but significant) systematic over-segmentation observed under quanti-
tative analysis. This over segmentation is most prominent around the area of the lower jaw
and chin, where no true features are located (segmentation relies on a single shape feature
at the chin). Accuracy would be improved if a reliable feature detector was available for
this area.

The use of priors for feature occurrence and location priors in the implemented system
is fairly basic. These priors could be updated dynamically using current feature occur-
rence information (see for example the scheme in [9]) or using feature co-occurrence/co-
location information (for example that learned in [1]). Configuration information from
previous timesteps could also be used. This is a rich area for future research.

From a theoretical point of view the level set evolution presented is imperfect as there
is no unique optimal mesh configuration for a given set of features, except for mesh values



calculated from zero level set points that are the closest zero level set point to a feature.
The state of other mesh points is based on the dynamics of the system. In practise this
is rarely a problem as feature locations change from one frame to the next, and the dy-
namics of nearby points are similar. However, surface roughness and imperfections can
be observed on occasion due to this. A solution to this would be to introduce a standard
curvature based speed function [13] or a probabilistic curvature prior [7] at the zero level
set points, which would implicitly define a single optimal mesh configuration. This would
have the added benefit of smoothing curvature, however would come at extra computa-
tional cost.

9 Acknowledgements

This work was funded by the European Union as part of the CogVis project (Contract
IST-2000-29375).

References
[1] S. Agarwal and D. Roth. Learning a sparse representation for object detection. In

Proc. European Conference on Computer Vision, volume 4, pages 113–127, 2002.
[2] A. Blake, R. Curwen, and A. Zisserman. A framework for spatiotemporal control in

the tracking of visual contours. International Journal of Computer Vision, 11:127–
145, 1993.

[3] T. Cootes, G. Edwards, and C. Taylor. Active appearance models. In Proc. European
Conference on Computer Vision, volume 2, pages 484–498, 1998.

[4] A. Fitzgibbon. Robust registration of 2d and 3d point sets. In Proc. British Machine
Vision Conference, pages 411–420, 2001.

[5] M. Isard and A. Blake. Condensation – conditional density propagation for visual
tracking. International Journal of Computer Vision, 29:5–28, 1998.

[6] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In Proc.
First International Conference on Computer Vision, pages 259–268, 1989.

[7] M. Leventon, O. Faugeras, W.E. Grimson, and W. Wells. Level set based segmenta-
tion with intensity and curvature priors. In Proc. IEEE Workshop on Mathematical
Methods in Biomedical Image Analysis, pages 4–11, 2000.

[8] M. Leventon, W.E. Grimson, and O. Faugeras. Statistical shape influence in
geodesic active contours. In Proc. Computer Vision and Pattern Recognition, pages
316–323, 2000.

[9] D. Magee. A sequential scheduling approach to combining multiple object classi-
fiers using cross-entropy. In Proc. International Workshop on Multiple Classifier
Systems, pages 135–145, 2003.

[10] R. Malladi, J. Sethian, and B.C. Vemuri. Shape modeling with front propagation: A
level set approach. 17(2):158–175, Feb. 1995.

[11] S. McKenna, S. Gong, and Y. Raja. Modelling facial colour and identity with gaus-
sian mixtures. Pattern Recognition, 31(12):1883–1892, 1998.

[12] N. Paragios and R. Deriche. Geodesic active contours and level sets for the detection
and tracking of moving objects. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 22(3):266–280, 2000.

[13] J.A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University
Press, 1999.

[14] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-
science, 3:71–86, 1991.


