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Abstract

Classical tracking-by-detection approaches require a ro-

bust object detector that needs to be executed in each frame.

However the detector is typically the most computationally

expensive component, especially if more than one object

class needs to be detected. In this paper we investigate how

the usage of the object detector can be reduced by using

stereo range data for following detected objects over time.

To this end we propose a hybrid tracking framework consist-

ing of a stereo based ICP (Iterative Closest Point) tracker

and a high-level multi-hypothesis tracker. Initiated by a de-

tector response, the ICP tracker follows individual pedes-

trians over time using just the raw depth information. Its

output is then fed into the high-level tracker that is respon-

sible for solving long-term data association and occlusion

handling. In addition, we propose to constrain the detec-

tor to run only on some small regions of interest (ROIs) that

are extracted from a 3D depth based occupancy map of the

scene. The ROIs are tracked over time and only newly ap-

pearing ROIs are evaluated by the detector. We present ex-

periments on real stereo sequences recorded from a moving

camera setup in urban scenarios and show that our pro-

posed approach achieves state of the art performance.

1. Introduction

Robust multi-person tracking is an important prerequi-

site for the use of mobile service robots in busy urban set-

tings. In this paper, we address the problem of stereo vi-

sion based multi-person tracking from a mobile platform

with reduced object detector evaluations. Unlike applica-

tions with stationary cameras, a mobile setup requires a

visual object detection component, since background sub-

traction is no longer applicable. Following the enormous

progress in object detection [7, 11], many robust tracking-

by-detection approaches have recently been proposed for

this purpose [21, 1, 17, 9, 25, 15, 12]. However, they typi-

cally require to evaluate a computationally expensive object

detector in each frame, making it hard to achieve real-time

performance at the system level.

Two main strategies have been proposed in order to alle-

viate this problem. The first is to constrain object detection
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Figure 1: (a) Given stereo range data, we first extract and track

ROI candidates from the depth map (top down view). (b) Extracted

ROIs in 3D are backprojected to the image. (c) Model (red points)

and data (blue points) point clouds are aligned using ICP. (d) Re-

sults after high-level tracker association using the ICP tracker

to small image regions-of-interest (ROIs) extracted, e.g., us-

ing stereo depth information [12, 14, 4, 3]. These ROIs are

generated in each frame and are evaluated by the detector

to feed a tracking-by-detection process. Most similar to our

approach, Bansal et al. [4] extract ROIs from an image by

projecting the 3D points from a stereo depth map onto the

estimated 2D ground plane. The local maxima of this pro-

jection are backprojected to the image, forming the ROIs

which are evaluated in each frame by the detector. The de-

tector output is then associated to trajectories using a cor-

relation tracker. As only a small number of ROIs are pro-

cessed in each frame, their approach nearly reaches real-

time performance.

A second strategy is to combine a complex high-level

tracker with a cheap low-level tracker that takes the brunt

of the work of following individual persons over time [19].

This strategy is based on the idea that once a person is de-



tected in a frame, its appearance will change only slightly

in the following frames, making simple low-level tracking

feasible. Mitzel et al. [19] propose such a hybrid framework

based on a cheap level-set tracker and a complex multi-

hypothesis high-level tracker. In their framework, the de-

tector is only activated every k frames, (re-)initializing a

set of low-level trackers that generate tracklets. The high-

level tracker then associates the resulting tracklets to plau-

sible trajectories, taking care of long-term data associa-

tion and maintaining person identities in case of occlusions.

Through this combination fewer detector evaluations are re-

quired from the detector than in conventional tracking-by-

detection approaches. The approach however suffers from

the fact that it may take several frames until newly appear-

ing persons are picked up by the tracker.

In this paper, we explore a combination of those two

strategies that combines their advantages. Similar to [4], we

extract ROIs based on stereo range data. In contrast to their

approach, we however do not simply apply the detector to

all ROIs in every frame, but instead track the ROIs over time

using cheap Kalman filter based data association and only

evaluate newly appearing ROIs with the detector. Similar to

[19], we then use verified detections to initialize low-level

tracker, which is responsible for frame-to-frame object fol-

lowing. In contrast to them, we however propose to use an

ICP based low-level tracker that achieves better localization

accuracy making use of the same depth information that was

used for generating the ROIs (Fig.1). The output of the ICP

tracker is then passed on to a high-level tracker performing

long-term data association. As our results will demonstrate,

this combination reduces the number of the detector acti-

vations significantly, while still maintaining high tracking

accuracy and guaranteeing fast initialization.

The paper is structured as follows. The next section dis-

cusses related work. After that, Sec. 3 presents an overview

of our tracking framework. Sec. 4 then introduces our pro-

posed ICP tracking approach, and Sec. 5 explains how it is

integrated into the entire tracking system. Finally, Sec. 6

presents experimental results.

2. Related Work

Computer vision approaches are gaining in importance

for mobile robot applications due to their capability to ex-

tract semantic information about the surrounding scene. Re-

cently introduced vision based object detection approaches

[11, 7] enabled the development of robust tracking-by-

detection frameworks [1, 17, 9, 25, 15, 3] with various

strategies for solving the data association problem [17, 26,

27, 15].

For real-time applications, there is a strong interest in

reducing the computation time of the object detector, espe-

cially for automotive scenarios. A common strategy is to

apply the detector only to those image regions which are
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Figure 2: Overview of the different interactions between the com-

ponents of our tracking system. Blue arrows indicate the interac-

tion between the individual components. Black arrows are used

representing the interaction within the components.

likely to include the target object. Different approaches for

extracting the ROIs were proposed based on motion [8], tex-

ture content [23], or (as already mentioned) stereo depth

[12, 3]. In contrast to [12, 3, 4] we do not evaluate each

ROI by the detector in every frame, but propagate the ROIs

over time and apply the detector only to newly appearing

ROIs.

The idea to use depth information for tracking pedes-

trians has been applied in several approaches before. Ar-

ras et al. [2] present a pedestrian tracking approach based

on single-plane scanner data by detecting and tracking legs

separately with Kalman filters, forming a multi-hypothesis

set. The high-level tracks which consist of two legs are ex-

tracted from the multi-hypothesis set solving the problem of

occlusion and self-occlusion. However, in our approach we

have to deal with dense stereo data, which comes with much

higher measurement uncertainties than laser data. Most

directly related to our approach, Feldman et al. [10] also

propose an ICP based method for multi-object tracking in

sports scenarios based on laser range data. This approach

requires 4 calibrated laser scanners around the sports field

to allow the extraction of the complete shape for each of

the players. Additionally, a fixed elliptic shape model is as-

sumed for detection and ICP tracking. However, this ap-

proach is not suitable for a mobile scenario, where only

partial depth information from a single, front-facing stereo

camera rig is available.

3. System Overview

Fig. 2 presents an overview of our complete tracking

framework. The system is divided into four major compo-

nents, whose interaction we will describe in the following:

ROI candidate generation and propagation, object detection,

ICP tracker, and a high level tracker.

The overarching goal of our framework is to avoid re-

dundant detector evaluations in a spatial, as well as in a

temporal context. By focusing on ROIs, the detector is ap-

plied only to relevant parts of the image, thus reducing the

computation time significantly. In addition, the propagation

of ROIs in time allows us to limit detector evaluations only



to newly appearing ROIs. The cheap ICP tracker, which

solves short-term data association for already detected per-

sons, takes over the role of the detector in supplying pre-

cise object location measurements to the high-level tracker.

Through this combination, we reduce the number of detec-

tor evaluations to a minimum, such that the whole tracking

system runs at more than 10 fps, while reaching state-of-

the-art tracking accuracy.

Briefly stated, the system components interact as fol-

lows. In each frame, we first compute the ROIs by project-

ing the stereo 3D points onto the estimated ground plane

and extracting the modes of the resulting distribution. Next,

each extracted ROI is associated with the ROIs from the pre-

vious frame, which are propagated using constant-velocity

Kalman filters. The ROIs that could not be associated are

assumed to have newly appeared in the scene and are eval-

uated by the detector. Successful detections are passed to

the ICP tracker, which computes a 3D model for each de-

tection. This model is represented by the 3D points that are

within a pedestrian-sized cylinder placed on the foot point

of the detection on the ground plane (see Fig. 3(b)). For al-

ready existing trajectories, the ICP tracker extracts the 3D

points that are located within a cylinder at the modes of the

2D grid map within the trajectory’s Kalman filter prediction

covariance. It then aligns the model points from the previ-

ous frame to the newly extracted data points using ICP (see

Fig. 3(c,d)), resulting in a precise estimate of the new object

location. From this new location, a new virtual detection

is generated by projecting the position back to the image

and transmitting it to the high level tracker. The detections

passed to the high level tracker are employed for generating

new tracks and extending the existing tracks based on an

Extended Kalman Filter (EKF) using a pedestrian specific

motion model.

As only few small ROIs that newly arise in the scene

need to be evaluated by the detector and the main tracking

work is handled by our fast ICP tracker, the entire system is

very fast. The whole tracking system runs at more than 10

fps, while reaching state-of-the-art tracking accuracy. Our

approach is based on stereo depth information, which is

in many cases already available through dedicated sensors

(e.g., Microsoft’s Kinect) or hardware processing solutions

(e.g., [22]). For our experiments, we used the depth esti-

mation approach by Geiger et al. [13] that runs at 10 fps

on a single CPU. In addition, we use visual odometry for

estimating the camera position, and we compute the scene

ground plane in each frame. For both tasks, there are also

real-time approaches available [18, 16]. In order to evalu-

ate our framework in a comparable setting, we however use

the odometry and ground plane estimates provided with the

datasets of [9].

(a) (b) (c) (d)

Figure 3: (a) Detection from the color image. (b) Front view of the

data points in 3D. (c) The model points (red) and the data points

(blue) before the ICP alignment. (d) The result of the ICP algo-

rithm showing a correct alignment of the data and model points.

4. ICP Tracking

The ICP (Iterative Closest Point) algorithm [5, 6] is a

popular method for aligning two three dimensional mod-

els based on their geometry. The goal is, given two points

clouds Mk = {~mi}
NM

i=1
and P = {~pi}

NP

i=1
to iteratively

revise the rotation and the translation which minimizes the

alignment error between the point clouds:

E =
∑

i

‖~pNN

i −R~mi − t‖2 (1)

where the point ~pNN

i ∈ P is the closest point to ~mi ∈ Mk

according to some distance function d:

~pNN

i = argmin
~p∈P

{d(~p, ~mi)} (2)

In each iteration, first the closest points are computed and

then the rotation and translation that minimize Eq. 1 are

applied to the points Mk resulting in a new point cloud

Mk+1. The iteration is repeated for the new point cloud

Mk+1. Finally, the rotation and the translation of each it-

eration step are accumulated resulting in a final transforma-

tion.

Considering our goal to track pedestrians we can ignore

the rotation estimation as pedestrians are assumed to move

upright and in addition in our case the depth information is

only available from one viewpoint. This constrains the ICP

algorithm to approximate only the translation between two

point clouds as follows:

E =
∑

i

‖~pNN

i − ~mi − t‖2 (3)

In each iteration step the mean distance of all corresponding

(closest) points is used in order to update Mk. We found

that already after 3 iterations the points Mk are well aligned

with the points P as illustrated in the example in Fig. 3.

The ICP tracker consists of two steps which are itera-

tively repeated.

1. For each initial detection we generate a 3D model. The

3D model is represented by the 3D points which are



sampled from a cylinder placed on the 3D position of

the detection (see Fig. 3b). The cylinder size roughly

approximates a person size with a radius of 0.35m and

a height of 2.0m.

2. The model points are employed for computing the new

position of the person in the next frame by aligning

them to the data points, applying the presented ICP al-

gorithm. The new position is then backprojected to the

image generating a new detection bounding box which

is fed back to the high level tracker. This new detec-

tion bounding box is treated in the next frame again

as the initial detection bounding box and we continue

with the step 1.

As the ICP tracker cannot recognize occlusions or a per-

son leaving the scene from the raw depth data, it can easily

get stuck on some background area. However, this diver-

gence of the ICP tracker can be detected by the high level

tracker which associates the output, the 2D bounding box

from the ICP trackers to the trajectories. Due to occlusion

the computed detection from the ICP tracker will surely vi-

olate the motion or appearance model of the current trajec-

tories and will not be associated to any of them. Thus in

each frame the ICP trackers whose detection could not be

assigned to any of the existing trajectories are terminated

by the high level tracker.

5. System Realization

This section describes the realization of our framework’s

individual components in more detail.

5.1. Depth based ROI Generation

The stereo range data provides an important prior infor-

mation for the location of vertical objects in the scene. This

allows us to constrain the execution of the computationally

expensive detector only to small regions and few scales of

the image.

For extracting the ROIs, the 3D points of the scene are

projected onto the ground plane to form a 2D histogram.

The bins of the histogram are weighted by the distance to

the camera and are thresholded in order to avoid noisy re-

gions. The weighting is necessary since the objects that are

further away consist of fewer points and would therefore

be rejected in the further processing. The final ROIs in 3D

are the connected components on the grid map as seen in

Fig. 4. The position of each ROI is specified by the cen-

ter of mass of the corresponding points. Additionally, we

keep the width of the ROI and also the histogram modes.

The modes are required for the low level tracker in order to

distinguish between two or more pedestrians walking close

together which will produce a single connected ROI.

For each ROI in 3D we set a rectangle at the center of

mass of the ROI with the width of the ROI and a height of

Figure 4: Extraction of the ROIs (right) by projecting the 3D

points from the depth map (left) to a ground plane.

2 meters positioned parallel to the camera. This rectangle is

projected to the image in order to obtain the corresponding

image region that is evaluated by the detector.

5.2. Object Detection

As pedestrian detector we employ our GPU based HOG

(Histograms of Oriented Gradients) detector [7]. With our

implementation [24] we can achieve the same detection per-

formance as reported in the original paper [7] and it requires

only 40ms for a 640 × 480 image.

In contrast to pure tracking-by-detection approaches [9]

we run the detector only on few small ROIs and only for

some scales. If a new ROI shows up in a frame, the detector

is run on this ROI evaluating only 5 scales instead of 27 as

in the original approach. We already know the rough scale

by dividing the height of the back-projected ROI from 3D

to the image by the detector window height. As the height

of the pedestrian in the ROI is not known we consider ad-

ditionally two scales above and two scales below the com-

puted scale in order to assure the detection of the pedestrian.

The evaluation of a ROI through the detector requires on

average only 2-3ms. In addition our ROI system is able

to also detect pedestrians that are smaller than 128 pix-

els (64x128 pixel detection window constrains the smallest

possible detection). In particular for pedestrians which are

far away from the camera the backprojected height h of the

bounding box in the image will be smaller than 128 pix-

els resulting in a scale of s = 128

h
. The scale s is larger

than 1, thus the ROI will be upscaled and the correspond-

ing person can be found by sliding over the upscaled ROI

with the standard HOG window. For achieving equivalent

performance with the sliding window detector, the image

needs to be upscaled by factor of two to the size of 1280

× 960. Processing such an image with our GPU detector

would require more than 180ms making it not applicable

for real-time systems.

5.3. ROI Propagation

Processing ROI association allows us to reduce the de-

tector time to a minimum. In particular in each frame, the

newly extracted regions of interest need to be associated

with the ROIs from the last frame. To this end we apply a

Kalman filter with a constant-velocity model starting from



each ROI from the previous frame. The system uncertainty

is propagated from frame to frame for each ROI and is em-

ployed for finding the new predicted position. In addition

the frame number when the ROI was last evaluated by the

detector is stored along with the associated region of inter-

est. This step is relevant for a periodic reinitialization for

alleviating the problem of false negatives.

For the new extracted ROIs that could not be associated,

we run the detector and if a detection is found a new ICP

tracker is started for this detection.

5.4. High Level Tracking Model

As a high level tracker we employed a simplified ver-

sion of the robust multi-hypothesis tracking framework pre-

sented by [17].

In the pure tracking-by-detection approach in each frame

the detections are transformed into global 3D world coordi-

nates by projecting the foot point of the bounding box to the

ground plane using the scene geometry information. These

3D positions are accumulated over time to multiple compet-

ing hypotheses set. The trajectory hypotheses are pruned to

a final set that best represents the scene using a model se-

lection framework.

Trajectory Hypothesis Generation. For linking the detec-

tions on the ground plane we employ an Extended Kalman

Filter (EKF) with a constant-velocity model. In each frame

when new detections are available we run two trajectory

generation processes. Firstly, we try to extend the exist-

ing trajectory by the new evidence. Secondly, for each new

evidence we generate new trajectory hypotheses using the

Kalman filter backwards in time up to 100 frames. This al-

lows us to bridge occlusions. Due to the fact that the new

observations are utilized for both processes extension of the

existing trajectories and generation of new trajectories, each

observation can be potentially assigned to two competing

hypotheses.

Pruning of Hypothesis Set. The trajectory hypothesis gen-

eration process outputs an over-complete set of trajectories.

Each hypothesis is ranked based on the likelihood of the as-

signed evidence under motion (pedestrian specific constant

velocity motion model) and appearance model (represented

as an RGB color histogram). Trajectory hypotheses com-

pete for the evidence through penalties if they overlap. The

final consistent set is obtained using model selection in a

Minimum Description Length framework, as shown in [17].

Person Identities. Since the model selection procedure

may choose a different hypothesis for a trajectory, either the

extended or the newly created one, we need to assure that

a consistent person ID is assigned to a selected trajectory.

Hence we propagate the identities by computing the overlap

between the trajectories found at the current frame with the

trajectories from the previous frame.

(a) (b)

(c) Using occlusion detection (d) Without occlusion detection

Figure 5: Example showing the shadowing problem in stereo

range data and our strategy to resolve it using explicit occlusion

detection. (a,b): No regular ROI is generated for the person

marked with a yellow arrow due to shadowing artifacts in the depth

map. (c,d): The green areas are the ROIs which were verified by

the detector in the current frame. Without occlusion detection,

the person is missed. In contrast, the occlusion detection module

prompts the detector to directly verify the area where the person

reappears, although there is still no depth information available.

5.5. Occlusion Handling

When dealing with stereo range data (as in our case),

we have to deal with the well-known shadowing problem,

which occurs for the part of the images which are visi-

ble only from one camera. This problem is visualized in

Fig. 5(b). Due to the lack of depth information in the area

behind the closest person to the camera, it is not possible

to find a region of interest for the person marked with the

yellow arrow. In example in Fig. 5(b), it takes three further

frames until the shadow disappears and the marked person

is visible in the stereo range data. In order to be able to

associate already existing tracks after an occlusion as fast

as possible and avoid losing the trajectory (after 15 frames

without observation, the trajectory is removed), we propose

to predict possible person-person occlusions and create a

ROI when those are over. For this, we propose to project

the 3D prediction of the EKF of each tracked person into

the image and compute the bounding box overlap using the

intersection-over-union criterion. If the overlap is above

0.5, then the occlusion is likely to occur and we mark the

person as occluded. In each further frame, we check for

all occluded persons if they become visible again within 15

frames. If a person reappears, we create a ROI at this posi-

tion and run the detector to evaluate this region and to revise

the tracker, giving a new observation for the EKF.

In Fig. 5(c),(d) we show the ROIs that are evaluated if the

person marked with the yellow arrow reappears after occlu-

sion. As can be seen in Fig. 5(c), the result of occlusion



detection directs the detector to evaluate the area where the

person reappears, although there is no ROI extracted from

depth. In contrast, Fig. 5(d) shows the result without us-

ing the described method, where the person remains unde-

tected.

5.6. Reinitialization

Due to false negatives of the detector some of the pedes-

trians could be missed and not tracked over the whole time if

newly appeared ROIs were evaluated only once. For robust-

ness, we propose to periodically re-trigger the object detec-

tor for ROIs which did not have a positive detector response

once they appeared in the scene. In particular during the

ROI association process we also propagate the frame when

a ROI emerges into the scene and was consequently evalu-

ated by the detector. For ROIs with negative initial detector

response we execute the detector once again after five and

ten frames. If the detector outputs a detection we continue

with the ICP tracker, if the detector response is negative we

continue propagating the ROI, but do not run any further

detector evaluations on it.

5.7. Consistency Checks

For robustness reasons it is necessary to check the con-

sistency of the tracking results of the ICP tracker. The con-

sistency check is performed by the high-level tracker by as-

sociating the resulting detections from the ICP trackers. If a

detection from the ICP tracker is physically inconsistent in

motion and does not fit the appearance with at least one of

the existing trajectories, the high level tracker terminates the

particular ICP tracker. For each trajectory which could not

be extended due to divergence of the ICP tracker, the high-

level tracker generates a ROI at the current position of the

trajectory. The generated ROI is treated as a newly emerged

ROI, which is consequently evaluated by the detector and

attempted to be associated with new ROIs in the next frame.

This process assures that if the ICP tracker fails, the trajec-

tory can still be robustly extended. Obviously, only those

tracks are considered here that are not labeled as occluded.

6. Experimental Results

We experimentally evaluate our approach on three chal-

lenging video sequences provided by [9]. All sequences

were captured using a child stroller carrying a stereo rig.

The image data was acquired at 13-14 fps and a resolution

of 640 × 480. The BAHNHOF sequence was captured on a

crowded side walk and contains 999 frames with 5193 an-

notations. The JELMOLI sequence was captured in a busy

pedestrian zone and contains 999 frames with 446 frames

that are annotated. The SUNNY DAY sequence was ac-

quired on a sunny day on a crowded side walk and con-

tains 999 frames out of which 354 are annotated. For all se-

quences the structure-from-motion localization and ground
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Figure 7: (a) Histogram of the number of ROI evaluations by the

detector per frame for the BAHNHOF sequence. (b) number of ex-

tracted ROIs in each frame (red), number of ROIs that were eval-

uated by the detector (blue), and number of final tracks estimated

for each frame (green).

baseline speed in fps recall@0.5 fppi

pure t-by-d 640 × 480 14.59 0.60

pure t-by-d 1280 × 960 4.62 0.69

no ICP, eval. all ROIs 6.54 0.70

ICP, number of sampled points speed in fps recall@0.5 fppi

ICP, 20 points 11.62 0.67

ICP, 50 points 11.36 0.69

ICP, 100 points 10.86 0.70

ICP, 500 points 7.23 0.69

ICP, all points 1.09 0.70

Table 1: Comparison of our proposed ICP tracker results to sev-

eral baselines on the BAHNHOF sequence. We report the effect of

the number of (randomly sampled) ICP points on the final tracker

run-time and accuracy.

plane estimates are made available by [9]. For the depth es-

timation we used the fast and robust algorithm presented by

[13] (10 fps on a single CPU) .

Quantitative Performance. For assessing the perfor-

mance of our tracking system, we applied the evaluation

criteria from [9]. To this end the tracked bounding boxes

are compared to manually annotated ground truth bound-

ing boxes in each frame. A bounding box is assumed to be

correct if the intersection-over-union overlap with a ground

truth bounding box is greater than 0.5. Fig. 6 presents the

performance curves in terms of recall vs. false positives

per image (fppi) for three sequences. As can be seen, our

approach achieves state-of-the-art performance. For com-

parison, we also provide the curves reported by [9] (only

BAHNHOF), [19](only BAHNHOF and SUNNY DAY) and

[4, 3]. Note that [4] did not use the original annotation files

provided by [9] but created their own, leaving out some hard

test cases.

Computational Performance. Most of the computation

time in standard tracking-by-detection approaches is re-

quired for the object detector, especially if more than one

object class/view needs to be detected. In order to evalu-

ate the effect of our proposed ICP tracker on reducing this
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Figure 6: Quantitative tracking performance of our approach compared to different baselines on the BAHNHOF, SUNNY DAY and

JELMOLI sequences from [9]. The results show that our approach can reach state-of-the-art performance. For all three test the same

parameter sets were used.

Figure 8: Example results on the test sequences SUNNY DAY (top) and BAHNHOF (bottom).

computation, we performed the following timing experi-

ments (using a machine with Intel Core2 Quad CPU Q9550

@ 2.83GHz processor, 8GB RAM, and an Nvidia GeForce

GTX 280 graphics card).

Running the ICP tracker with all available model and

data points is very time consuming and not really necessary,

as shown in Tab. 1. Here, we illustrate the effect of using

only a fixed number of randomly sampled points from the

model and data for the ICP tracker. With only 100 points,

we can already reach state-of-the-art tracking accuracy (re-

call of 0.7 @ 0.5 ffpi on the BAHNHOF sequence) with a

speed of 10.86 fps.

As a baseline, we compare the run-time of our approach

to a pure tracking-by-detection system. To this end, we run

our GPU-accelerated object detector (requires 40ms for a

640×480 image) over the entire image in each frame and

use the high-level tracker for data association. The frame

rate is significantly higher (14.59 fps) compared to the pro-

posed hybrid tracker (10.86 fps), but the recall decreases

considerably (from 0.70 to 0.60 @ 0.5 fppi), since only

pedestrians larger than 128 pixels (the height of the sliding

window of the HOG detector) could be detected. When up-

scaling the image to twice its original resolution, the miss-

ing pedestrians can be detected (recall of 0.70 @ 0.5 fppi);

however, the frame rate drops considerably to 4.6 fps.

For comparison, we also report an experiment where we

evaluate the effect of the ROI propagation scheme. Instead

of running the ICP tracker starting from an initial detection,

the detector is run in each frame for all ROIs. As expected,

we reach high recall in this test (0.70 @ 0.5 fppi), but the

frame rate drops significantly to 6.54 fps, since we redun-

dantly run the detector for each ROI in each frame instead

of propagating the information whether the ROI contains a

person or not. In Fig.7 we illustrate the triggering rate of

the detector for the BAHNHOF sequence. Note that in 2/3
of the frames, the detector runs only at most for two small

ROIs. On average the detector is executed for 2.38 ROIs per

frame.

Fig.7(b,c) presents the relation between the number of

detector evaluations, number of all ROIs and number of



valid tracks. As expected, in the part of the scene with many

tracks also the number of detector evaluations increases.

Due to occlusion and clutter in crowded parts of the scene,

the ICP tracker diverges, causing the consistency check to

fail. Thus, the high-level tracker generates additional ROIs

that are evaluated in order to achieve robust tracking perfor-

mance and not to lose tracks.

Qualitative Evaluation. Finally, Fig.8 shows some qual-

itative results achieved on the BAHNHOF and SUNNY DAY

sequences. It can be seen that our system is able to track

most of the visible persons correctly keeping correct person

identies. In addition to the tracking bounding box, we vi-

sualize the depth information that was used for computing

the ROIs (in green inside the box). The ROI foot points are

plotted as red points on the ground plane. Detailed results

can also be found in the supplementary material.

7. Conclusion

We have presented a hybrid framework for mobile multi-

person tracking. Our approach reduces the use of a compu-

tationally expensive detector by a combination of ROI prop-

agation, low-level ICP tracking and a high-level tracker. As

our experimental evaluations show, we can reach state of

the art tracking performance with this combination at a run-

time that is suitable for real-time applications.

In the future we plan to apply the ICP approach to

more complex tracking scenarios including also other ob-

ject classes such as cars, where several different viewpoint

detectors need to be evaluated for each ROI. For such cases,

we expect the run-time benefit to be even larger. In addi-

tion we plan to combine our approach with ROI selection

techniques [20].
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