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Abstract— In this paper, we present an object-centric, fixed-
dimensional 3D shape representation for robust matching of
partially observed object shapes, which is an important com-
ponent for object categorization from 3D data. A main problem
when working with RGB-D data from stereo, Kinect, or laser
sensors is that the 3D information is typically quite noisy. For
that reason, we accumulate shape information over time and
register it in a common reference frame. Matching the resulting
shapes requires a strategy for dealing with partial observations.
We therefore investigate several distance functions and kernels
that implement different such strategies and compare their
matching performance in quantitative experiments. We show
that the resulting representation achieves good results for a
large variety of vision tasks, such as multi-class classification,
person orientation estimation, and articulated body pose esti-
mation, where robust 3D shape matching is essential.

I. INTRODUCTION

In this paper, we address the problem of matching partially
observed, potentially articulated 3D shapes. Such matching
problems occur in many practical scene understanding sce-
narios based on 3D sensors, for example in mobile robotics
or autonomous driving [1], [2]. When observing a scene with
stereo or laser sensors, it is relatively easy to extract object
candidates by looking for groups of 3D points that extend
beyond the ground surface [3], [4], [5], [6]. However, further
classification and detailed analysis of those object candidates
faces severe challenges. While a rough division into major
object categories such as pedestrian, car or bicyclist can still
be achieved based on the 3D region sizes, robust rejection
of outliers requires a more detailed shape analysis [6]. The
same applies when more detailed results shall be estimated,
such as body orientations or even detailed body poses [7],
[8].

A main challenge when analyzing and matching 3D shapes
from stereo or laser data is that the resulting 3D information
is often quite noisy and only contains a partial view of an
object’s 3D shape, since in each frame only the object surface
facing the sensor can be observed. If an object is moving, the
visible part of the surface will change with the viewing angle,
and non-rigid motions will introduce further distortions. A
good representation for matching is therefore hard to find.
Point cloud [4] or surfel [12], [13] representations are often
used in robotics and automotive applications, but they are
hard to match due to the sparse representation and the
noisy measurements. Mesh representations, as often used in
Computer Graphics (e.g., [9]), are not applicable, since the
shape is only partially observed. Part-based representations
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Fig. 1: We propose an object-centric, fixed-dimensional rep-
resentation and corresponding kernel functions that enable
robust matching for generic partial 3D shapes. This new
shape representation can be applied to a large variety of
vision applications such as multi-class classification, person
orientation and articulated body pose estimation.

have therefore been proposed based on 3D features [10],
height slices [11], or volume subdivisions [14].

When looking at other fields, such as object categorization
[15] or action recognition, an important lesson from the past
is that powerful global descriptors are immensely valuable. A
main reason why the HOG descriptor [16] became so popular
for all kinds of object detection tasks is that it provides a
highly discriminative, global, and fixed-dimensional repre-
sentation for object appearance that makes it far easier to
apply in machine learning approaches than complex part-
based models. The same argument can be made for the bag-
of-words representation for object categorization [17] and for
the Motion History Image [18], [19] for action recognition
in surveillance scenarios. All of those representations have
in common that they define a fixed-dimensional descriptor
that is easy to use and readily applicable for a large variety
of machine learning tasks.

In this paper, we take inspiration from the above examples
and propose an object centric, fixed-dimensional representa-
tion for matching partial 3D object shapes. Our approach
integrates 3D measurements from several video frames into
a common object-centric, cylindrical coordinate system and
then subdivides the individual measurements into a discrete
set of bins, spanning shape variation in height, orientation
angle, and time. For each bin, we keep a list of observed
distances (the “motion history” of the corresponding surface



point) that together characterize the observed shape and its
evolution over time. The resulting mhGCT representation
extends the “Generalized Christmas Tree” (GCT) model that
was previously used for tracking [5] by taking into account
the detailed motion histories, which allows for more robust
matching. We then propose several distance functions and
kernels that build upon this representation and show that they
can be applied to a large variety of visual analysis tasks, in-
cluding multi-class object categorization, person orientation
classification and articulated body pose estimation.

The paper is structured as follows. The next section dis-
cusses related work. Sec. III then introduces our shape rep-
resentation, and Sec. IV proposes several distance functions
and kernels. Finally, Sec. V presents experimental results.

II. RELATED WORK

When designing a new feature for classification or re-
gression tasks, the goal is to find a representation that can
easily be used with different machine learning techniques,
while providing sufficiently discriminative information to
support the task. The history of object detection and activity
recognition approaches nicely illustrates this point. Simple
global feature representations such as Histograms of Oriented
Gradients (HOG) [16] or Motion History Images (MHI)
[18], [19] have become very popular, since they result in
fixed-dimensional feature vectors that can directly be used
in, e.g., SVMs. In contrast, interest point based or part-
based representations, such as the Constellation model [20]
or ISM [21], are relatively unwieldy, since they start from
a variable number of input features and have to employ a
complex algorithmic pipeline to integrate their contributions
into a consistent recognition score. Consequently, progress
has been much faster for approaches building upon fixed-
dimensional representations – even if those representations
are less expressive on their own, the ability to combine them
with powerful machine learning techniques more than makes
up for this limitation.

Up to now, however, there is no universally accepted
representation for matching partially observed 3D surface
shapes, as can be obtained from stereo, RGB-D, or LIDAR
sensors. Although different variations on the HOG idea have
been proposed for indoor object recognition from Kinect
RGB-D data, such as Histograms of Oriented Depths (HOD)
[22] or Histograms of Oriented Normals (HONV) [23], they
are poorly suited for outdoor applications, where sensors can
only deliver sparse (in case of LIDAR) or noisy (in case
of stereo) depth information. In those applications, a single
depth scan is often not sufficient for robust recognition and
temporal integration of several measurements becomes desir-
able, which is problematic for articulated objects. While there
are several approaches in the computer graphics community
that can robustly align and match articulated 3D shapes [9],
[24], [25], they require a full surface mesh to be available,
rendering them inapplicable here.

When considering only a single object class, it is often
possible to use fixed proxy shapes in order to match object
appearances. For example, [26] define a cylindrical proxy
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Fig. 2: The GCT generation process. A GCT consists of
a vertical center axis and several height layers with asso-
ciated uniformly spaced rays (a) that together form a non-
parametric representation of the object’s surface shape. When
a GCT receives new measurements (b), each ray is updated
with the distance from the center axis to the 3D surface point
closest to the ray (c).

shape onto which they map observed surface pixel colors
for 3D people tracking and re-identification in multi-view
surveillance applications. However, such representations can-
not adapt to different object shapes.

In the robotics community, a number of methods have
been proposed for multi-class classification using 3D laser
scans [27], [28], [6]. However, those approaches rely on
local features or part representation in order to describe the
different object classes, resulting again in complex matching
procedures.

In this work, we propose a fixed-dimensional object rep-
resentation that is suitable for capturing the surface shape
of partially observed, possibly articulated objects, as well
as its evolution over time. We build upon the GCT shape
representation proposed by Mitzel et al. [5], [29], which
accumulates shape information of generic tracked objects
over time. In the original papers [5], [29], this representation
has been shown to be beneficial for precise frame-to-frame
alignment in tracking, but its potential has not been explored
for recognition tasks yet. Our main contribution in this paper
is to demonstrate how a motion-history augmented GCT
representation (mhGCT) can be used for more general multi-
class classification, orientation and pose estimation tasks. For
this, we propose suitable distance functions and kernels and
show their usefulness on several benchmark datasets.

III. GENERALIZED CHRISTMAS TREE (GCT)
REPRESENTATION

General GCT Representation. Fig. 2(a) visualizes the
GCT representation [5] we use as the basis for our feature
representation. A GCT represents an object by a number
of regularly sampled surface measurements (“rays”) in a
cylindrical coordinate system that encode the distance from
the surface to the cylinder’s upright center axis. Given a point
cloud for a candidate object (e.g., obtained from a stereo
depth map) and an estimate for the object center, the GCT
is built up by casting rays over a fixed number of height and
angle levels (c.f . Fig. 2(b)) and collecting all surface points
that fall within a small volume around the ray. For each ray,
the point closest to the ray is selected and its distance to the
central axis is taken as a measurement. When tracking an
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Fig. 3: mhGCT extraction procedure. (a) Object tracking
results. (b) Reconstructed GCTs of the scene in (a) where
the color of GCT points corresponds to the significance of
the ray represented by the number of accumulated distances.
(c) Binning procedure to create the mhGCT feature vector.

object over time, the GCT is aligned to the next frame’s
point cloud using upright ICP [30] (i.e., restricting the
transformation to a 2D translation on the ground plane and a
1D rotation around the ground plane normal), and each ray
receives a new distance measurement. Over time, each ray
thus builds up a distribution over observed surface distances,
from which a robust median estimate can be extracted. In [5],
Mitzel et al. propose to use this median estimate, weighted
by the inverse variance of the ray’s distance distribution, for
ICP alignment. They show that this results in more precise
point alignment for articulated objects and thus more robust
tracking.

mhGCT as Feature. In this paper, we propose to create a
new slice-wise discretization of the GCT that additionally
captures each ray’s motion history over a fixed temporal
window. As illustrated in Fig. 3, our proposed mhGCT
coarsely discretizes the surface information contained in the
GCT rays into a fixed number of vertical, angular, and
temporal bins. For each bin, we keep either only the median
distance (mhGCT-med) or a histogram over the contained
distances (mhGCT-hist). In both cases, this results in a fixed-
dimensional feature vector for the partially observed object
shape. Matching object shapes now boils down to comparing
mhGCT vectors. However, as we argue in the following,
several complications still need to be overcome in order to
make this matching effective.

Most importantly, relying on depth information we always
obtain only a partial view of the object. The GCT accumu-
lates surface information over time and can thus complete
object shapes whenever objects turn. However, we need to
ensure that we always compare corresponding mhGCT bins
during the matching procedure, e.g., by aligning the extracted
GCTs to a canonical orientation. When handling moving
objects, we can use the trajectories obtained from the tracker
in order to estimate each object’s moving direction and rotate
the GCT to a fixed orientation facing the camera. For static
objects, this is unfortunately not possible; depending on the
task, it may thus be necessary to compare mhGCTs at several
different rotations.

In addition, since the surface information stored in
mhGCTs depends on both the object’s orientation and on
its position relative to the depth sensor, different views of

Fig. 4: Four example images from the SUNNY DAY sequence
with tracking boxes for person and non-person class
generated by our tracker.

the same object will only partially overlap. Also, depending
on the size of an object, bins belonging to high height layers
might be empty. Therefore, when we compare two mhGCTs
bin-by-bin, it will often happen that we compare empty with
full bins. This raises the question how we should deal with
bins for which we have no information. In the following,
we will explore different distance functions for our mhGCT
feature that handle empty bins explicitly.

IV. DISTANCE FUNCTIONS

When comparing mhGCT bins, three cases can occur.
In the first case, both bins are empty. We do not want to
penalize this case and hence their distance should always
be set to 0. The second case occurs if exactly one of the
two bins is empty. In this case, we want to enforce a
penalty in order to discourage misalignments. In the last case,
both bins contain valid distances, which we can compare
using a variety of distance functions. In the following, we
present several possible distance functions and evaluate their
suitability for matching.

Constant Penalty. A simple solution is to use Euclidean
distances between bin medians and to assign a constant,
learned penalty p whenever an empty bin is matched with a
full one. This can be done as follows:

dCP (x,y) =

n∑
i=1

b(xi, yi) (1)

where

b(xi, yi) =


0, if xi = ∅ ∧ yi = ∅
p, if (xi = ∅ ∧ yi 6= ∅)

∨(xi 6= ∅ ∧ yi = ∅)
(medxi

−medyi
)2, otherwise

(2)

Relative Penalty. In order to reduce the sensitivity to noise,
the bin penalties can be weighted by the proportion of valid
rays in the specific bin with respect to the total number of
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height angle penalty histBins k

KNNCP 30 17 0.31 - 4
KNNRP 9 2 1.41 - 4
KNNDD 20 21 0.02 - 6
KNNHI 26 17 - 6 6
SVMDD 26 17 0.02 - -
SVMHI 29 9 - 2 -

(c)

Fig. 5: Two-class (person, non-person) classification per-
formance on the BAHNHOF test sequence using our four
different distance function combined with KNN and SVM
classifiers, compared to a DPM baseline [31]. (a) Perfor-
mance when the trajectories are split into 10-frames tracklets
and the mhGCTs for classification are extracted from the
10-frames tracklets. (b) Performance when using the full
trajectories and the corresponding extracted mhGCTs. (c)
Optimal parameter values obtained by cross-validation on
the SUNNY DAY sequence for each of the six best classifiers.
Note: for the KNNDD and SVMDD classifiers, the penalty
corresponds to the learned default distance.

valid rays in the respective mhGCT. We formally define the
corresponding distance as follows:

dRP (x,y) =

n∑
i=1

p

∣∣∣∣rir − r′i
r′

∣∣∣∣+ ∑
j=1...n,

xj 6=∅∧yj 6=∅

(medxj−medyj )
2, (3)

where ri and r′i are the number of rays in the corresponding
bins and r and r′ the total number of rays in the correspond-
ing mhGCT.

The two previously described distance functions do not
fulfill the triangle inequality and hence are not metrics. This
is mainly due to the fixed penalty p, regardless of whether
it is weighted or not. In the following, we therefore present
two measures which are explicitly designed to be metrics,
allowing us to employ them in a kernel.

Default Distance. In this measure, we drop the case
differentiation whether a bin contains rays or not and just
assign to each empty bin a default distance. Then we can treat
this default value completely the same as any other median
distances from bins containing valid rays. For comparing the
resulting mhGCT feature, we again use Euclidean distances.

Fig. 6: Qualitative results in the multi-class classification
problem using mhGCT features with an SVMHI-classifier.

dDD(x,y) =

√√√√ n∑
i=1

(dxi − dyi)
2 (4)

where dxi
=

{
ddefault , if xi = ∅
medxi , otherwise

Histogram Intersection. The distance functions presented
so far compare mhGCTs using the median distances of all
valid rays. This way, we are able to represent an entire
bin by just a single number. While this results in efficient
computation, it also loses information, since the original
distance distributions are discarded. We therefore propose
another distance metric that uses histogram intersection to
compare (normalized) distance distributions of corresponding
bins. Similar to the Default Distance, we represent empty
bins by a fixed default histogram. We define this default
histogram to be the inverted mean histogram of the corre-
sponding bin across a training set of mhGCTs (i.e., each
default histogram cell contains one minus the value of the
corresponding mean histogram cell). This way, we maximize
the distances to empty bins, while staying within a metric
histogram comparison framework.

dHI(x,y) =

n∑
i=1

d∩ (x′
i, y

′
i) (5)

where x′
i =

{
xdefault , if xi = ∅
xi, otherwise

From Distances to Classifiers. In the following, we apply
all four distance functions together with a KNN classifier.
Since dDD and dHI are metrics, we can additionally define
kernels for them for use in a kernel SVM classifier.

kDD(x,y) = exp {−g · dDD(x,y)} (6)
kHI(x,y) = exp {−g · dHI(x,y)} (7)

We have thus defined four different distance measures and
two kernels for comparing mhGCT features, corresponding
to different strategies of handling empty bins. Especially
the kernels are a valuable contribution, since they allow us
to use mhGCT features with a large variety of powerful
machine learning techniques, such as kernel SVMs, kernel
PCA, or Gaussian Processes. Note that this has only be-
come possible through our object-centric, fixed-dimensional
mhGCT representation and our definition of suitable default
handling strategies for empty bins. In the following section,
we compare the different distance functions experimentally.
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Fig. 7: (top row) Object classes used in our multi-class experiments together with example GCTs. (bottom row) Multi-class
classification performance presented as confusion matrix for two baseline approaches and the KNNCP and SVMHI classifiers
using our mhGCT feature: (g) Baseline results with a simple KNN height classifier. All person with bag classes are confused
with the person class. (h) Baseline performance when using the volume histogram classifier, as proposed by [29]. (i) Results
when using constant penalty distance function with our mhGCT feature and KNN as classifier. (j) Results when using SVMs
with histogram intersection kernel with our mhGCT feature.

V. EVALUATION

In order to demonstrate the effectiveness of our new
mhGCT shape representation, we apply it to a variety
of matching problems, including pedestrian classification,
multi-class classification, pedestrian orientation estimation
and articulated body pose estimation. In the following,
we present an extensive evaluation for all those problems,
underlining the generality of our new shape representation.

Pedestrian Classification. We first analyze the effect of
each distance function by applying them to a 2-class clas-
sification problem person vs. non-person. We combine
all four distance functions with a KNN classifier, resulting
in the variants KNNCP, KNNRP, KNNDD, and KNNHI. In
addition, we apply kernel SVMs with kDD and kHI , resulting
in the variants SVMDD and SVMHI.

For training and testing, we use two popular sequences,
BAHNHOF and SUNNY DAY from the Zurich Mobile Pedes-
trian Corpus, courtesy of [32]. Both sequences were ac-
quired from a stereo rig mounted on a child-stroller moving
on crowded sidewalks. We extracted mhGCTs using the
tracking-before-detection framework from [5], [29], which
is based on low-level stereo region segmentation and multi-
hypothesis data association. This approach enables us to
track a large variability of objects that are present in the
scene, including pedestrians, child strollers, trash bins, build-
ings, or traffic signs, but it also generates many spurious
responses from scene clutter and facade structures, as shown
in Fig. 4. The goal of this experiment is to find out how well
the proposed mhGCTs can separate true pedestrians from this
clutter and how the different classifier variants compare for
this task.

We labeled all extracted trajectories and the corresponding
mhGCTs for all objects belonging either to the person or

non-person class for both sequences and used the SUNNY
DAY sequence for training and the BAHNHOF sequence for
testing. As all distance functions depend on a number of
parameters, we perform cross-validation embedded into a
grid search on the annotations of SUNNY DAY to determine
the optimal parameters (c.f . Fig. 5(c)). It should be noted
that constructing GCTs that are sufficiently well-aligned
for matching requires a robust estimate for each GCT’s
object center. We therefore employ the procedure proposed
in [5] and re-estimate the object center from the stored GCT
distances after several frames have been observed.

Fig. 5 shows the resulting ROC curves for all 6 classifiers.
We compare both the classification performance based on
full trajectories (Fig. 5(b)) and the performance when split-
ting each trajectory into 10-frame tracklets and generating
mhGCTs for each tracklet (Fig. 5(a)). The latter is motivated
by an online application, where classification would then be
based only on a 10-frame time window. As can be seen
from those plots, the mhGCTs achieve good classification
performance, with the two SVM variants consistently out-
performing the KNN versions. When splitting the trajectories
into 10-frame mhGCTs, the performance drops only slightly
(95.63% AUC vs. 94.28% AUC), which means our shape
representation becomes robust already with few frames.

In order to put those results into perspective, we compare
the 10-frame tracklets results to the baseline classification
performance obtained by applying an appearance based DPM
detector [31] to the last frame of each 10-frame tracklet (in
a region-of-interest corresponding to 1.5 times the tracked
person’s bounding box). As can be seen from Fig. 5, the
DPM achieves a lower performance with 87.95% AUC,
showing that our shape representation is competitive and can
provide a viable complement to appearance-based classifiers.
Based on the above results, we only report performances
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Fig. 8: (top row) Confusion matrices of orientation estimation using our mhGCT in combination with different classifiers
for 8 different orientation classes (a) Cross-validation with the KNNCP-classifier. (b) Cross-validation with the SVNHI-
classifier. (c) Performance on the independent test set using KNNCP-classifier. (d) Performance on the independent test set
using SVMHI-classifier. (bottom row) Obtained results if we count the prediction in the two nearest neighbor classes as true
as well. As can be seen, most confusions occur only with the two closest neighboring orientation classes.

for the KNNCP and SVMHI classifiers in the following
experiments.

Multi-Class Classification. In order to assess the perfor-
mance in a multi-class problem, we use the dataset from
[29], which contains 325 sequences with more than 15,000
frames recorded with a Bumblebee2 stereo camera. The
dataset contains four different classes (c.f . Fig. 7(a-d)) such
as person, child stroller, bag2 (a 2-wheel bag that
can be pulled behind a person) and bag4 (a 4-wheel bag
that can be pushed). In order to get more variability, we
augmented the dataset by three additional classes, namely
persons carrying a bag in the left hand (bagLeft), the right
hand (bagRight), or both hands (bagBoth), as shown
in Fig. 7(e-f). We again apply our SVMHI and KNNCP
classifiers. In addition, we include two baseline classifiers: a
simple height classifier (Fig. 7(g)) and a KNNCP classifier
with a mhGCT representation that only considers height bins
and a single angular bin per height level (Fig. 7(h)). This
simulates the volume histogram classifier proposed by [29].

Obviously, these classes cannot be distinguished by a
simple height classifier as shown in Fig. 7(g), where classes
such as bagBoth, bagLeft, bagRight are always
confused with the person class. However, when using
mhGCT with the Constant Penalty distance function and
KNN as classifier we obtain remarkable performance, over
95% for classes person, stroller, bag2 and over
63% for the remaining classes (c.f . Fig. 7(i)). SVMHI
performs similarly well, as shown in Fig. 7(j). In Fig. 7(h)
we present the performance when simulating the volume
histogram classifier as proposed by [29]. Here we set the
number of angle bins to one and the number of height bins

to 20, as proposed in [29]. For the four original classes
as introduced by [29], we obtain similar performance as
reported in [29]; however, for the three new additional classes
the performance is quite low. This result is expected since it
is difficult to distinguish between classes such as person
and bagBoth, bagLeft, bagRight just using one
angle bin. However, when employing mhGCT with 20 angle
bins and KNNCP or SVMHI, the performance for the new
classes increases significantly.

Orientation Estimation. Next, we evaluate our new
mhGCT representation on a pedestrian orientation estimation
task. For this, we used the pedestrians from the dataset
proposed by [29] as our training set. Each mhGCT obtained
from a 10-frames tracklet was annotated with the orientation
obtained from the tracker, binned in an 8-bin orientation his-
togram whose bins are evenly spread over 0 to 360 degrees. It
is important to note that for this experiment we do not rotate
the mhGCT in order to face the camera, since we assume
that the walking direction is unknown at test time. In total
we obtained over 700 labeled mhGCT vectors for training.
The results of cross-validation are presented in Fig. 8(a
top) using KNNCP and Fig. 8(b top) when using SVMHI.
The obtained results are quite promising, especially if we
consider the confusions of each class which are mostly the
two nearest neighbors (left and right). To illustrate this, we
plot in Fig 8(a,b bottom) also the confusion matrices when
we count an orientation estimate in the directly adjoining
orientation bins to be acceptable as well. As expected, the
optimal parameter settings for this experiment show a larger
number of angular bins (22 for KNNCP and 30 for SVMHI)
than for the 2-class problem (c.f . Fig. 5(c)).
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Fig. 9: (left) Synthetic data used for creating a database of
mhGCTs annotated with exact pose: (a) RGB image and
(b) corresponding depth image of one of the models; (c)
extracted GCT using a 12-frames window. (d) Quantitative
pose estimation results using the PCP evaluation criterion
(percentage of correct body parts) introduced by [33].

Fig. 8(c,d) present the results on an independent test set
which contains mhGCTs from pedestrians from BAHNHOF,
SUNNY DAY and test sequences from the dataset of [29].
The test set contains around 700 mhGCTs, similar to the
training set. The results are slightly worse, but confusions
again mostly occur with the two closest neighboring classes,
as Figs. 8(c,d right) illustrate. The obtained results are
remarkable considering the fact that we use only noisy depth
information.

Pose Estimation. Finally, we apply our mhGCT feature
to the challenging problem of body posture estimation in
outdoor settings. The goal here is to infer the position of
a person’s body parts (such as torso, (left/right) shoulder,
upper-arm, lower-arm, etc.). In order to train our classifiers
we make use of synthetic training data (generated using the
software Poser [34]), as shown in Fig. 9, allowing us to
obtain precise ground-truth joint locations. We used three
different person models that were rendered from a number of
different camera locations while being animated with walk-
ing motions from MoCap data. In each frame we obtained
a point cloud of the person and the corresponding joint
locations in 3D. For this task, we split a person’s trajectory
now into 12-frames tracklets and each tracklet is split into
three temporal bins from which we generate mhGCT features
as before. These three mhGCTs are then simply concatenated
forming a new feature which captures information about a
person’s gait phase. Each training example is labeled with
the pose from the last frame of the 12-frame tracklet.

In order to test the performance of our approach for this
task, we recorded a new dataset using a stereo camera setup
where persons were walking in front of the camera, as
shown in Fig. 10. For each frame, we annotated the visible
person’s joints in 2D. In total we annotated over 520 frames.
For each annotated frame, we extract 12-frame mhGCTs as
before. Then we apply the KNNCP classifier to estimate the
body pose from the nearest neighbor in mhGCT space. For
visualization, we align the retrieved skeleton of the nearest
neighbor to the GCT’s 3D center position and backproject

each joint to the image. Some qualitative results are shown
in Fig. 10.

The results are promising, showing that we often ob-
tain a precise joint location estimate. In order to evaluate
the performance quantitatively, we use the well-established
PCP measure for pose estimation proposed by [33], which
assesses the Percentage of Correctly labeled body Parts.
An inferred body part is assumed as being correct if its
joints (endpoints) lie within a fraction of the length (PCP-
threshold) of the ground-truth segment from their annotated
location. In Fig. 9 we show the performance while varying
the PCP-threshold for the full-body pose, as well as for
each single body part. Considering the fact that we can
only partially observe the objects, where in many cases
several parts are not visible at all, we obtain very good
performance. Over 50% of the body part locations can be
estimated correctly (with PCP-threshold 0.5). Expectedly, we
have some problems classifying lower legs and lower arms,
which can be easily explained by the fact that these are the
parts which undergo the strongest articulations. Since we
accumulate shape information over time, relying on median
distances over a time window, we slightly underestimate the
articulation of these body parts.

VI. CONCLUSION

We have presented a novel object centric, fixed-
dimensional 3D shape representation which enables a robust
matching of partially observed 3D shapes observed from
RGB-D data. We have proposed different distance functions
and kernels for the matching task and have compared their
matching performance in a series of quantitative experi-
ments. In order to demonstrate the wide applicability of our
proposed 3D representation, we applied it to a variety of
challenging vision tasks such as multi-class classification,
person orientation estimation, and body posture estimation
and showed that it can achieve good performance. We there-
fore foresee that it can find broad applicability in a variety of
scenarios, providing a shape-based alternative to complement
current appearance-based object descriptors such as DPM
[31].
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