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Abstract— Most vision based systems for object tracking in
urban environments focus on a limited number of important
object categories such as cars or pedestrians, for which powerful
detectors are available. However, practical driving scenarios
contain many additional objects of interest, for which suitable
detectors either do not yet exist or would be cumbersome to
obtain. In this paper we propose a more general tracking
approach which does not follow the often used tracking-by-
detection principle. Instead, we investigate how far we can
get by tracking unknown, generic objects in challenging street
scenes. As such, we do not restrict ourselves to only tracking the
most common categories, but are able to handle a large variety
of static and moving objects. We evaluate our approach on the
KITTI dataset and show competitive results for the annotated
classes, even though we are not restricted to them.

I. INTRODUCTION

Outdoor visual scene understanding is a key component

for autonomous mobile systems. Specifically, detection and

tracking of other traffic participants are essential steps to-

wards safe navigation and path planning through populated

urban areas. Recent results on standard benchmarks [1] show

that some object categories, such as cars or pedestrians, can

already be tracked rather reliably by state-of-the-art tracking-

by-detection approaches [2], [3], [4], [5]. In practical driving

scenarios, however, there are numerous other objects that

could pose potential safety hazards and it quickly becomes

infeasible to train specific detectors for all possible classes.

In this paper, we therefore investigate the problem of

generic object tracking in street scenes. Rather than starting

from the output of a class-specific detector, we try to extract

a set of object candidate regions purely from low-level cues

and to track them over time. This approach has the advantage

that it is not a priori restricted in the types of objects that

can be tracked. However, the tracking task becomes much

more challenging, since it requires solving a complex figure-

ground segmentation problem in every frame to decide which

scene regions contain valid objects and at what spatial extent

those objects should be represented.

In order to address this segmentation problem, we make

use of scene information from stereo depth to generate

Generic Object Proposals (GOPs) in 3D and keep only

those proposals that can consistently be tracked over a

sequence of frames. In our tracking step, we link these

object proposals into trajectories and integrate the individual

3D measurements into a 3D shape model for each tracked

object. We jointly reason about valid object proposals and
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Fig. 1. We propose an approach to track generic objects in street scenes that
goes beyond the capabilities of pre-trained object detectors. Our approach
can handle a wide variety of static and moving objects of different sizes
and robustly track them. Blue areas indicate potential object regions.

their corresponding trajectories via a model selection based

multi-object tracking procedure.

For such an approach to work, the generation of good

object proposals is a key requirement. This is a very chal-

lenging problem, since the unknown objects may originate

from vastly different scales (see Fig. 1), measurements

from nearby objects tend to merge, and objects close to

scene structures are difficult to segment due to often noisy

stereo data. To reach acceptable recall values, state-of-the-art

appearance-based object proposal generation approaches [6]

typically need several thousand object proposals per frame,

two orders of magnitude more than what would be tractable

to use in a tracking framework.

We propose a novel robust multi-scale object proposal

extraction procedure that uses a two-stage segmentation

approach. First, a coarse supervised segmentation removes

non-object regions corresponding to known background cat-

egories such as road, building, or vegetation. Next, we

perform a fine unsupervised multi-scale segmentation to ex-

tract scale-stable object proposals from the remaining scene

regions. As many of these proposals may overlap and the

correct object scale often cannot be determined on a single-

frame basis, we perform multi-hypothesis tracking at the

level of object proposals.

In summary, our main contributions are: (1) We present

a novel, scalable approach that successfully tracks a large

variety of generic objects in challenging street scenes. (2)

As a key component of this approach, we propose a robust

multi-scale 3D object proposal extraction procedure based on

a two-stage segmentation and scale-stable clustering. (3) We

demonstrate the validity of our approach quantitatively and



qualitatively on the KITTI dataset [1]. We show that our

approach can compete with state-of-the-art detector-based

methods in close and medium camera distance.

Object definition. In the remainder of this paper we refer to

an “object” as an entity that appears in urban street scenes,

sticks out of the ground plane, has a well-defined closed

boundary in space [7], and is surrounded by a certain band

of free-space. In addition, objects need to appear consistently

in a sequence of frames, either moving or not, and maintain a

roughly consistent appearance. We also assume a size range

for objects of interest between 0.5m and 5m. This definition

includes other traffic participants, as well as static/parked

vehicles and items of street furniture. We explicitly exclude

only items that are better explained by stuff categories such

as vegetation or building facade.

II. RELATED WORK

Many approaches have been proposed for object tracking

in street scenarios [8], [2], [9], [3], [5]. Most of those follow

a tracking-by-detection strategy by first applying detectors

trained for specific categories on each frame and then linking

the detections into trajectories. The KITTI tracking bench-

mark [1] gives a good overview of such tracking methods.

Zhang et al. [5] pose tracking as a maximum-a-posteriori

data association problem with non-overlap constraints. Pir-

siavash et al. [3] consider tracking as a spatio-temporal

grouping problem and propose greedy global optimization

approach. Milan et al. [2] use a continuous energy minimiza-

tion approach that takes into account physical constraints and

track persistence. While these approaches obtain impressive

results, they have the drawback that they assume that all

interesting object categories are known beforehand and that

detectors can be trained for each category.

Recently, the problem of tracking generic objects has

received more attention. For automotive scenarios several

approaches address this problem using highly precise LIDAR

data as input [10], [8], [11], [12]. Petrovskaya et al. [10] use

a model-based approach to detect car-sized objects in laser

point clouds. Held et al. [12] utilize 3D shape and color

information to obtain precise velocity estimates of generic

objects in LIDAR data. In contrast, we use depth information

obtained from a stereo camera pair, which is far less accurate

and requires a more robust processing pipeline.

Other approaches try to find and track generic objects

based on motion segmentation. For example, Bewley et al.

[13] use a self-supervised framework to detect dynamic

object clusters extracted from a monocular camera stream.

In contrast to those approaches, we are also interested in

tracking static instances of interesting objects.

To the best of our knowledge, only few approaches deal

with generic object tracking from stereo depth. Nguyen et

al. [14] also target generic objects of several sizes, but they

only track moving objects, with the purpose of generating

improved occupancy grids of the scene for a driver assistance

system. While our pipeline is similar to the approaches of

[9], [15], they only track pedestrian sized objects, whereas

we aim to also track larger objects such as cars and vans.
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Fig. 2. High-level overview of our pipeline.

A key part of our pipeline is the generation of good

Generic Object Proposals (GOPs). Several previous methods

have been proposed for this step, often based on LIDAR

data. Wang et al. [16] use a minimal-spanning-tree clustering

approach to extract 3D object proposals from LIDAR data

and then classify them into background, bicyclist, car, or

pedestrian. Ioanneu et al. [17] propose a Difference-of-

Normals operator to extract scale-stable object proposal

regions from LIDAR data. We compare against this approach

in Sec. VII. Bansal et al. [18] propose a semantic structure

labeling approach based on stereo data in order to create

proposal regions for a pedestrian detector. The resulting

regions are too coarse and would not generalize well to all

interesting objects. There is also a large set of approaches

that try to find good object proposals in the form of bounding

boxes from color images [7], [6], [19]. While state-of-the-

art methods such as EdgeBoxes [6] obtain a very high recall,

their precision is too low to be applicable for our approach.

Our approach builds upon a semantic segmentation to

reject scene parts that can be well explained by back-

ground categories. Several other approaches have already

demonstrated semantic segmentation on different subsets of

KITTI [1]. Xu et al. [20] fuse information from several

sensors to classify superpixels, while we only rely on stereo

data. Ladický et al. [21] jointly infer disparity maps and

dense semantic segmentations based on a monocular image

using a combination of depth and semantic classifiers. Ros

et al. [22] pre-compute a high-quality semantic map of

the static parts of a scene in order to later on label the

environment based on the current location within that map.

Objects that appeared in the scene can then automatically

be labeled. While this is fast and gives good results, our

approach also generalizes to unknown scenes.

III. METHOD OVERVIEW

Fig. 2 gives an overview of our approach. Given a se-

quence of stereo image pairs, we compute disparity maps

using ELAS [23]. From a disparity map we generate point

cloud and fit a ground plane using RANSAC. To narrow



down the 3D search space for potential objects, we perform

supervised coarse semantic segmentation on the point cloud

(Sec. IV). Based on the idea of things and stuff [24],

we remove all points that belong to stuff regions such as

road, sky, or building points. This gives us a coarse idea

where potential objects could be located. On the remaining

point cloud we perform multi-scale search for generic object

proposals (Sec. V). Each proposal is defined by a set of 3D

points. The result is an over-complete set of possible 3D

objects.

In the last step we perform object tracking. First, we

transform the 3D object proposals to the common coordinate

frame using visual odometry of [25] and link them across

frames. Next, we identify the best set of objects and their

corresponding tracks (Sec. VI). We perform this selection

jointly in a model selection based multi-hypothesis tracking

framework, which searches for the subset of object trajectory

hypotheses that together best explains the observed data.

IV. SEMANTIC SEGMENTATION

We use a supervised semantic segmentation approach to

classify parts of the scene that do not resemble objects

and can therefore be removed for further processing. In

contrast to the classical semantic segmentation tasks, we are

interested in correctly recognizing the known background

categories while generalizing to potentially unseen object

categories. To achieve that, we specifically use features

that capture the background categories well. We treat cars

and pedestrians as one single object class, such that after

semantic segmentation we know that something is an object,

but not of what kind. We follow the design of a typical

segmentation pipeline: starting with an over-segmentation,

features are extracted for each segment and are then used to

classify the segments into semantic categories. A Conditional

Random Field (CRF) is then applied to enforce spatial

coherence. As our further approach operates in 3D, we use

the VCCS algorithm [26] to partition the point cloud into

segments. For each segment we compute several features

which can be grouped into four categories:

Appearance. We compute L*a*b* histograms over the

points within a segment. We use three separate histograms

for L*, a*, and b*, each containing 10 bins (30 dimensions).

Furthermore, we compute the mean and covariance of the

L*a*b* gradients within the segment (3+6 dimensions as

the covariance is symmetric). Finally, we add histograms of

textons, similar to those used in [27]. We textonize the whole

image and create a histogram of textons within the segment

(50 dimensions), giving a total of 89 dimensions. Only the

appearance features are based on the color image, while all

further features are based on the 3D point cloud.

Density. These features are largely inspired by Bansal et

al. [18]. Based on the orientation of an estimated ground

plane, we slice the 3D space into 3 height bands and project

the points of each band onto a density map. This gives us

densities for 3 height regions. The density maps are then

discretized using 3 resolutions. By projecting a segment’s

centroid onto each density map we are able to select a cell

in each layer and resolution (3× 3 = 9 grid cells). We also

consider the 4-neighborhood of the selected cells in each

layer (4 × 9 = 36 grid cells), resulting in a total of 45
dimensions. Furthermore, we count the 3D points within a

segment, which represents the density of the segment itself,

summing up to a total of 46 feature dimensions.

Geometry. Based on the covariance matrix of the 3D points

within one segment, we compute several spectral and di-

rectional features [28]. From the eigenvalues we compute

the “point-ness”, “linear-ness”, “surface-ness” and curvature

of the segment. From the eigenvectors we determine the

segment normal and the cosines between both the normal

and tangent vectors and the ground plane normal. Finally,

we compute a tight bounding box of the segment along

the principal axes. This results in a total of 12 feature

dimensions.

Location. This feature represents a location prior with 3

dimensions. It consists of: the height of the segment centroid,

the depth of the segment centroid and the horizontal angle

between the camera’s optical axis and the vector from the

camera center to the segment centroid.

Thus, our resulting feature vector consists of a total of 150

dimensions. We then train a Random Forest classifier [29]

with single-attribute tests, yielding class posteriors for every

segment. A fully connected CRF [30], defined over the

segment centers in 3D, further improves the results. We

use a close-range smoothing kernel defined only over the

3D centroid locations and a larger-range appearance kernel

defined over the 3D centroid and the average L*a*b* color

of a segment. From this semantic segmentation we only

consider the segments labeled as object for our further steps.

V. GENERIC OBJECT PROPOSAL GENERATION

The multi-scale object proposal generation method pro-

duces a ranked set of object proposals (GOPs) from the

remaining object regions within the point cloud. In addition

to correct object proposals (targets for tracking), this set

may still contain under- and over-segmentations (e.g., car

parts, groups of pedestrians, pedestrians merged with other

objects). These overlapping and competing proposals are a

major difference to previous single-scale approaches [9] and

make the data association task more challenging.

In order to support efficient data association and tracking,

the object proposal generation procedure should achieve

a high recall with a very small set of object proposals.

Current appearance-based object proposal methods are able

to achieve good recall, but at the cost of very large proposal

sets (for an overview see [19]).

The multi-scale search for object proposals is necessary

for several reasons. Firstly, sizes of potentially interesting

objects fundamentally differ (e.g., pedestrians and vans).

Secondly, the observed objects might be just partially visible.

Noisy stereo point clouds typically contain severe depth

artifacts and outliers. This makes our problem even harder

and requires a robust approach, which we describe in detail

in the next subsections. In a nutshell, we first project the

3D point cloud to the ground plane and compute a density
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Fig. 3. Semantic segmentation allows us to only consider points labeled
as object. Since object sizes are unknown, we consider different scales of
the ground-plane density map.

map of the 3D points. Then we perform multi-scale search

for object proposals as follows. We iteratively smooth the

density map and identify blobs (clusters) around modes in

the density map using Quick-Shift [31] at each scale. Our

final proposals are clusters that persist in the scale space of

the density map.

Scale-Space Representation of the Density Map. First, we

discretize the ground plane of the point cloud into a regular

grid and compute the point-density map D by projecting the

3D point cloud to the ground plane. Each grid cell stores the

scalar value representing the density of points falling into the

cell. In addition, cells store a list of associated 3D points.

We create a ground-plane scale-space representation of the

density map Dσk
, k = 1 . . .K by convolving D with a

Gaussian kernel σk whose size increases in each iteration k

(see Fig. 3).

Multi-Scale Clustering. In the next step, we apply Quick-

Shift clustering [31] to obtain the modes of the scale-filtered

density Dσk
: Ck = {clusterk (m)} ,m = 1 . . .#clusters.

A cluster clusterk (m) =
[
{cellc}m , BB2D

m , sm
]

is defined

by the set of cells {cellc}m , c = 1 . . .#cells that converged

to its mode. BB2D
m represents a 2D bounding box that is

computed by projecting the corresponding 3D points to the

image plane (see Fig. 3) and sm is a scale-stability count.

Identification of Scale-Stable Clusters. In order to obtain a

compact set of GOPs we identify the clusters that persist over

scales. This step is motivated by results from scale-space

filtering [32], namely that the most scale-stable proposals

also tend to be the most salient ones. We identify scale-

stable clusters by iterating through cluster sets Ck, k =
1 . . .K and search for similar clusters between sets Ck and

Ck+1. If two clusters clusterk (j), clusterk+1 (l) are very

similar according to our scale-stability criterion, then we

merge them. This is done by removing clusterk (j) from

Ck and merging it with clusterk+1 (l) and incrementing

the scale-stability count sm of clusterk+1 (l) by 1. In

our scenario, two clusters should be declared as similar

when they (roughly) correspond to the same object. This

motivates the following scale-stability criterion: two clus-

ters clusterk (j) and clusterk+1 (l) are similar when their

bounding boxes BB2D
j and BB2D

l have a very high overlap.

To be specific, we compute the Jaccard Index J (·, ·) of the

two bounding boxes and declare them as the same cluster if

J
(
BB2D

k , BB2D
l

)
> 0.9.

Finally we obtain a set of GOPs {Ωt
i} for frame t where

each GOP is defined as:

Ωt
i =

[
pt
i,C

t
i,3D,ht

i, S
t
i , r

t
i

]
, (1)

where pt
i is the 3D position of the ith GOP, projected

onto the ground plane. Ct
i,3D is a 3 × 3 covariance matrix

representing the uncertainty in 3D position pt
i, computed as

[33]

Ct
i,3D =

(
FcLC

−1
2DFcL + FcRC

−1
2DFcR

)−1
, (2)

where FcL ,FcR are Jacobians of the projection matrices of

both cameras and C2D is the covariance of pixel measure-

ments. ht
i denotes a color histogram, computed by dividing

the bounding box of the GOP into 4× 4 cells and stacking

their RGB color histograms. St
i ∈ R

3 denotes the set of 3D

point measurements of the GOP (in the camera space) and

the scalar rti ∈ [0, 1] is the object stability score, computed

as rti =
si
K

, where si is scale-stability of the proposal.

VI. TRACKING

Starting with the previously introduced, possibly overlap-

ping GOPs
{
Ω0:t

i

}
, we now want to find a set of most likely

objects and their trajectories {Hn}. Our basic assumption is

that correct GOPs have a higher chance of producing stable

trajectories with consistent appearance than GOPs caused by

noise and incorrect segmentations.

We approach this problem by performing tracking and

object selection jointly in a multi-hypothesis tracking frame-

work. Other than classic tracking approaches we are not

only looking for physically exclusive inlier detections (i.e.

is the track continued by detection A or detection B?), but

we also have an inlier hypothesis ambiguity on physically

overlapping object proposals (see Fig. 4).

We tackle this challenging multi-hypothesis tracking prob-

lem on the object proposal level by maintaining a list

of physically overlapping object-trajectory hypotheses that

compete for the (potentially overlapping) GOPs. At each

time step, our algorithm selects a subset of hypotheses, that

best explains the observations. We formulate tracking as a

model selection procedure and extend our previous work

[34], [35], where trajectories with consistent motion and

appearance are preferred. Additionally, our method takes

temporal consistency of the 3D shape of the tracked object

into account. Our method is also capable of keeping track

of currently not selected track hypotheses. As a concrete

example, this means that we may track a group of pedestrians

as a single object over a sequence of frames1, but we also

keep hypotheses for the individual pedestrians. If at some

point their motion starts diverging, the observed data can

better be explained by individual pedestrian hypothesis.

Tracking is performed on the estimated ground plane and

the camera pose computed for each frame using the Visual

Odometry method of [25]. In order to obtain a stable 3D

shape representations of the tracked objects, we integrate

the noisy 3D measurements of the GOPs over time. In

following, we will introduce the quadratic pseudo-Boolean

optimization (QPBO) tracking method by Leibe et al. [34]

and our extension of the approach, that enables us to perform

1Remember that we do not have pedestrian specific knowledge, such that
a group of pedestrians is a valid object.
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Fig. 4. Tracking-by-detection associates detections and rejects the incorrect
tracks (top). We associate GOPs and penalize incorrect associations (e.g.car
parts) but associate both individual pedestrians and pedestrian groups
(bottom).

tracking without using a detector and track regions that likely

correspond to the valid objects.

A. QPBO Tracking

The idea of [34] is to use a detector to generate an over-

complete (possibly physically implausible) set of trajectory

hypotheses. Then a (physically plausible) set of hypotheses is

selected by solving a quadratic pseudo-Boolean optimization

problem (QPBO):

argmax
m

mTQm, m ∈ {0, 1} , (3)

where m is a binary indicator vector that indicates whether

the model (hypothesis) was selected or not. The diagonal

terms of the matrix Q represents the hypothesis likelihoods

(cost benefits for specific hypothesis) reduced by a constant

penalty ε1 that enforces sparse solutions:

qnn = −ε1 +
∑

Dt

i
∈H0:k

n

(
(1− ε2) + ε2 · S(D

t
i |H

0:k
n )

)
. (4)

Here, Dt
i represent the supporting detections of the hy-

pothesis H0:k
n and S (·) is the likelihood of the detection

belonging to the hypothesis. With off-diagonal entries we

model interactions between hypotheses:

qmn =− 0.5 ·

(

ε3 ·

Physical overlap penalty
︷ ︸︸ ︷

O(H0:k
n , H0:k

m ) + (5)

∑

Dt

i
∈H0:k

n
∩H0:k

m

(
(1− ε2) + ε2S

(
Dt

i |H
∗
))

︸ ︷︷ ︸

Avoiding double-counting of inlier contributions

)

,

where H∗ ∈ {Hm, Hn} is the weaker hypothesis. O (·, ·)
measures the physical overlap of the hypotheses and the

second term corrects for double-counting detections that

are consistent with both hypotheses. Model parameter ε2 is

the minimal score of the inlier detections and ε3 weights

penalization of the physical overlap.

In our formulation, we use the GOPs Ωt
i instead of the

detections Dt
i and introduce a shape model of the unknown

object to the tracking process. Physical overlap between the

competing hypotheses is computed as a Bhattacharyya coef-

ficient of the two 2D occupancy histograms of their shape

representations. The histograms are computed by sampling

3D points from the hypotheses shape representations and

projecting them to the ground plane.

B. Object-Trajectory Hypothesis Generation

The basic unit of our tracker is the object-trajectory

hypothesis H0:k
n , that spans over the frames 0 . . . k:

H0:k
n =

[
I0:kn ,M0:k

n , A0:k
n , S0:k

n

]
, (6)

where In represent the inlier GOP set of the nth hypothesis,

Mn is the motion model, An the appearance model and

Sn is the 3D shape model. Note, that an object-trajectory

hypothesis does not only hypothesize the trajectory but also

the object’s shape. This is a fundamental difference compared

to the original QPBO tracking.

Hypothesis Generation. Following the QPBO tracking ap-

proach, the first step is to generate an over-complete set of

hypotheses. In each frame, we extend the old hypothesis

set using the new GOP set by running a forward Kalman

filter. We start a new hypotheses from the new GOPs that

were not used for extending old hypotheses by running

the Kalman filter backwards. At each Kalman filter step

we perform nearest neighbor data association within the

validation volume of Ci,3D, selecting inlier GOPs of past

frames by evaluating the GOP association probability.

Data Association. We compute GOP Ωt
i association proba-

bility as (we omit the indices 0 : k to reduce clutter):

p
(
Ωt

i|Hn

)
= p

(
Ωt

i|An

)
· p

(
Ωt

i|Mn

)
· p

(
Ωt

i|Sn

)
. (7)

As appearance model we compute the Bhattacharyya dis-

tance between the trajectory RGB color histogram An and

GOP color histogram ht
i:

p
(
Ωt

i|An

)
=

∑

r,g,b

√

1− ht
i (r, g, b) ·An (r, g, b). (8)

For motion model we assume a constant-velocity Kalman

filter with the following state vector:

xk =
[
xk, yk, ẋk, ẏk

]T
, (9)

where
[
xk, yk

]T
represent the 2D position on the ground

plane and
[
ẋk, ẏk

]T
the velocity. Given the predicted state

xk and GOP Ωt
i, we get the motion model probability as:

p
(
Ωt

i|Mn

)
= e

−
1

2

(

pt

i
−[xk,0,yk]

T
)

C−1

(

pt

i
−[xk,0,yk]

T
)

, (10)

where C = Ci,3D + Csys, Csys is the system uncertainty

of the Kalman filter. The shape model is evaluated by:

p
(
Ωt

i|Sn

)
= e−α·dJBB2D

−β·dJBB3D

, (11)

where dJBB2D is is the Jaccard distance (defined as 1 −
J (·, ·)) between the 2D bounding boxes of the (integrated)

hypothesis shape representation and the GOP. These bound-

ing boxes are computed by projecting the associated 3D

points to the camera image plane. dJBB3D is the Jaccard
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Jaccard 69.30 92.64 81.53 73.30 8.18 79.76 27.05 74.11
Acc. 91.52 95.21 89.17 79.98 9.14 89.30 64.39 61.68

TABLE I

JACCARD SCORE & CLASS-ACCURACY FOR OUR 7 CLASSES.

distance between their 3D bounding boxes and α, β are the

weighting factors for both terms.

Finally, the fit of the GOP Ωt
i to the hypothesis S

(
H0:k

n

)

is evaluated as:

S
(
Ωt

i|H
0:k
n

)
= e−(

k−t

τ ) · p
(
Ωt

i|H
0:k
n

)
· p

(
Ωt

i

)
. (12)

The term p (Ωt
i) = e−γ(1−rt

i
) is the GOP prior computed

from the GOP stability score rti . The final score of the hy-

pothesis S
(
H0:k

n

)
is a summation over its inlier GOP scores,

weighted by temporal decay. The parameter τ regulates the

extent of temporal decay and γ regulates the influence of the

GOP prior.

C. Shape Model Measurement Integration

Our tracker relies on raw 3D depth estimates for the com-

putation of GOP associations and selection costs. Because

individual stereo-based 3D measurements are very imprecise,

we integrate 3D measurements of inlier GOPs I0:kn over

time to create a stable 3D representation of the hypotheses.

We continuously build hypothesis shape representations S0:k
n

by integrating the GOP measurements in a voxel grid and

computing occupancy probabilities of the voxel grid cells.

We perform integration in a two-step procedure: first, we

reconstruct the point cloud representation of the integrated

model, second, we register model points with associated

inlier GOP points St
i and update the shape model S0:k

n with

new measurements.

Model Initialization. We initialize the model by centering

a fixed-size regular voxel grid at the center of mass of the

first inlier GOP of the hypothesis H0:k
n and initialize each

voxel grid cell cj ∈ S0:k
n with p

(
c0j
)
, the probability that a

measured point falls into the cell (normalized count of the

points falling into the cell).

Model Update. To update the shape model S0:k
n with new

GOP measurements St
i we center the voxel grid represen-

tation of the integrated model to the last position (world

coordinates) of the hypothesis H0:k
n and reconstruct points

with the highest occupancy probability along the camera ray.

We align the shape model S0:k
n to the new measurement St

i

using weighted Iterative Closest Point (ICP) algorithm. For

efficient updates, we consider cells cj independent and use a

Binary Bayes Filter to update occupancy probabilities of each

cell [36]. The state transition model applies an exponential

decay towards the uniform distribution.

VII. EXPERIMENTAL EVALUATION

In this section we conduct a series of experiments to first

evaluate the individual stages of our approach and then assess

overall performance. As a test bed we use the well known

KITTI dataset [1]. All experiments are performed on the

KITTI tracking training set. As we perform general object

tracking and do not single out specific classes, the standard

evaluation pipeline on the KITTI test set is not suitable for

our approach. All methods evaluated in the remaining of the

paper do not use the training set as input. This enables us to

use it as a valid test bed.

A. Semantic Segmentation

To show the validity of our segmentation algorithm itself,

we compare our approach to three recent baselines [21],

[22], [20] which each provide ground truth annotations for

a different set of images and semantic categories within the

KITTI [1] dataset. Only an approximate comparison can be

provided, as the approaches use different depth maps and

thus label slightly different parts of the image. Ladický et

al. [21] even estimate a dense semantic map without depth

information, whereas our method provides semantic labels

only for image pixels with a corresponding depth estimate.

However, even with this rough comparison, Table II shows

that our semantic segmentation obtains competitive results.

Segmentation Dataset. For our complete pipeline, we

trained our semantic segmentation classifier on a total of

203 annotated images extracted across the KITTI odometry

dataset (we will publicly release this data upon publication).

In our annotations we labeled the following classes: building,

car, curb, grass/dirt, person, pole, road, sky, sidewalk, sign,

surface marking, tree/bush and wall. For our approach we

group person and car into a single object class.

For the remaining pipeline, the semantic segmentation

is used as an initial step to filter out regions which are

unlikely to belong to an object. Therefore, its main goal

is to be able to distinguish between object and non-object

regions, rather than separating (non-)object classes. While

our annotated dataset contains a total 13 object categories, we

merge them into object and non-object classes for evaluation.

We qualitatively and quantitatively found that better results

can be obtained by using more than only two classes for

training. We believe that this is the result of reducing the

intra class variance. In practice, curb, sidewalk and surface

marking were merged into the road class. We also joined

wall with building, and pole with sign. Table I shows both

the class accuracy and Jaccard scores for these classes.

B. Object Proposal Generation

In Fig. 5 we compare our generic object proposal gen-

eration method with two relevant baselines. Difference-

of-Normals (DoN) [17] demonstrated excellent results on

KITTI 3D laser data [1]; EdgeBoxes [6] is a state-of-the-

art appearance-based object proposal generation method (as

shown in [19]). The code of both methods is publicly

available. We use default parameters for EdgeBoxes [6] and

their pre-trained edge detection model. For DoN we used the

specified parameters from [17].

Fig. 5 (left) shows that our method requires 2 orders of

magnitude fewer proposals than EdgeBoxes [6] to cover

roughly ∼ 70% of the relevant targets (annotated in KITTI).



Build
ing

Car
Fence

Grass
Obsta

cle

Pole
Road

Sidew
alk

Sign
Sky

Tree
Global

Average

Ladický [21] 87.2 88.9 39.4 69.9 28.5 83.2 76.5 91.6 84.6 82.4 72.2

Our approach 90.53 93.29 20.66 62.90
N/A

0.00 89.25 48.03
N/A

70.10 87.05 82.07 62.4

Ros [22] 84.3
N/A

62.9 2.1 96.8 75.2 17.1 92.8 51.2 61.6

Our approach 88.48
N/A

6.83
N/A N/A

12.91 88.23 53.53 48.64
N/A

94.43 81.26 56.15

Xu [20] 81.1 81.6 89.1 81.6 94.4 - 86.6
Our approach

N/A N/A N/A
75.99 90.13

N/A
94.53

N/A N/A
90.13 89.87 91.57 88.87

TABLE II

CLASS-ACCURACY COMPARISON TO OTHER APPROACHES. WE TRAIN OUR APPROACH ON THE DIFFERENT SEMANTIC ANNOTATIONS. OUR RESULTS

ARE AVERAGED OVER 5 RUNS AND GRAY CELLS REPRESENT CLASSES NOT REPRESENTED IN A DATASET.
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Fig. 5. GOP Recall. Left: Comparison of proposal generation method and
two baselines, Difference-of-Normals [17] and EdgeBoxes [6]. Right: Recall
per occlusion.

With 30 object proposals per frame, DoN has a similar

saturation point as our method, but achieves only ∼ 40%
recall. Fig. 5 (right) shows the recall of our method under

varying amounts of occlusion. As can be seen, our approach

achieves good recall for the mostly visible objects. For

partially occluded objects, our method reports 2D bounding

boxes only spanning the visible area, while the KITTI

annotations cover the whole object (even if it is not actually

visible). As our method is not aware of object categories, no

class-specific size heuristics can be applied.

EdgeBoxes [6] does not require depth data, but needs too

many proposals to be applicable to our problem. We observed

that DoN [17] produces very relevant and compact proposals,

but only in the close camera range.

C. Tracking

In this section we demonstrate competitive performance

on car and pedestrian categories compared to other state-

of-the-art detection-based approaches on the KITTI tracking

dataset [1]. We will show that our proposed tracks include

the categories annotated in KITTI.

Evaluation of tracking performance of our approach is

non-trivial as we do not have category knowledge for the

tracked objects. This means that we do not know if a

trajectories represents, e.g., a car or pedestrian; it is just

a generic object. Especially the category-specific precision

metrics become meaningless, as the confidence in a tracked

object does not rely on its category!

We compare to two state-of-the-art tracking-by-detection

methods [2], [5], for which we obtained tracking results from

the authors. Fig. 7 (left) shows a frame-level recall evaluation

for cars and pedestrians as a function of the distance from

the cameras. In short camera-range (25m) we outperform the

other methods in terms of recall, while they achieve a higher
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Fig. 7. Left: Tracking recall compared to two baselines [5], [2] on
pedestrian and car categories. Right: Precision vs. recall of our method
for all categories in KITTI, using our voxel-grid based and the GCT based
integration [9].

recall in the limit. In case of pedestrian tracking the state-

of-the-art method [2] outperforms our method by about 13%
points. We observed that this performance difference origi-

nates from the fact that we are simply not able to distinguish

between individual pedestrians at the tracking level. Already

at the proposal level, proposals for pedestrians walking close

together are ranked higher, as the free-space surrounds the

groups surpasses the free-space around individuals. Again,

this is due to the fact that our tracker has no category-

related knowledge. In order to validate this effect, we also

plot the performance when changing the annotations, such

that annotated pedestrians walking very close together are

merged into a single hypothesis (See Fig. 7, left). To further

show generalization to novel classes, we also report recall

for the cyclist class in Fig. 7 (left).

In Fig. 7 (right) we show a full precision-recall curve

for all annotated objects in KITTI based on the assumption

that those annotations can be used as a proxy for all valid

objects (in reality, not all objects are not annotated). Our

approach can track about ∼50% of all annotated objects in a

distance range of up to 30m. Experimentally the voxelgrid-

based integration method turned out to be more robust for

tracking than the GCT approach [9]. This experiment also

demonstrates the importance of robust shape integration.

Qualitative results are shown in Fig. 6.

VIII. CONCLUSIONS

In this paper, we investigated how far we can get with a

generic object tracking approach. In particular, we proposed

a novel tracking pipeline with the key feature of tracking

multiple objects simultaneously without explicitly learning

a classifier for each category. This is an important step

towards better scene understanding, where it is impossible

to learn class specific knowledge for everything interesting.



Building Grass/Dirt Object Road Sky Sign/Pole Tree/Bush

Fig. 6. Qualitative results on the KITTI tracking training set. Left: Semantic segmentation results. The label colors are shown in the color map at the
bottom. Middle: Generic Object Proposals. Right: Tracking Results. The static objects are visualized with the gray bounding boxes.

We do not aim to replace detector-based tracking methods,

but believe that an optimal tracking approach should combine

the strengths of both paradigms, which we plan to address

in future work. Towards our goal of general object tracking,

we proposed a competitive semantic segmentation algorithm,

a novel multi-scale object proposal generation stage, that

reaches high recall with few proposals, and a 3D tracker

that achieves competitive results for close-range objects.
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