
Automatic detection and tracking of pedestrians from a

moving stereo rig

Konrad Schindlera, Andreas Essb, Bastian Leibec, Luc Van Goolb,d

aPhotogrammetry and Remote Sensing, ETH Zürich, Switzerland
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Abstract

We report on a stereo system for 3D detection and tracking of pedestrians in urban

traffic scenes. The system is built around a probabilistic environment model which

fuses evidence from dense 3D reconstruction and image-based pedestrian detec-

tion into a consistent interpretation of the observed scene, and a multi-hypothesis

tracker to reconstruct the pedestrians’ trajectories in 3D coordinates over time.

Experiments on real stereo sequences recorded in busy inner-city scenarios are

presented, in which the system achieves promising results.

Keywords:

1. Introduction1

Automotive safety and autonomous navigation are emerging as important new2

application areas of close-range photogrammetry. The goal in such applications is3

to equip a vehicle or robot with cameras, and automatically derive a metric and se-4

mantic model of the platform’s environment from the recorded image sequences.5

In road scenes, a particularly important part of such an environment model are6

the pedestrians. Knowing their locations and motion trajectories is an essential7

prerequisite for safe navigation, path planning, and collision prevention (Shashua8

et al., 2004; Gavrila and Munder, 2007; Wedel et al., 2008; Ess et al., 2009a). The9

topic of this paper is the detection and tracking of people with a stereo camera rig10

mounted on a moving camera platform.11

The described task requires a combination of geometric 3D modelling to ob-12

tain a metric environment model, and image understanding to find the people in13

the observed scene. Furthermore processing must be done online, i.e. at any given14
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(a) CharioBot (b) CharioBot II (c) SmartTer

Figure 1: Recording platforms used in this work. (a), (b) stereo rig mounted on child strollers. (c)

stereo rig mounted on SmartTer robotic car. Only synchronised stereo videos serve as measure-

ment data, the further sensors of the SmartTer platform were not used.

time the state of the environment must be estimated using only data observed in15

the past and present. Tracking people in 3D coordinates from a moving vehicle is16

a challenging combination of several classic problems:17

• to establish a 3D reference frame for tracking, the platform’s ego-motion18

needs to be estimated, which amounts to recovering the position and orien-19

tation of the stereo rig at each frame in a common coordinate system.20

• the people within the cameras’ field of view must be detected in the images,21

and then localised in the 3D reference system.22

• the per-frame detections of each individual must be connected over time to23

form pedestrian trajectories in 3D world coordinates.24

In this paper we report on a system for detecting and tracking pedestrians25

from moving vehicles. The described system uses only stereo vision as input (the26

recording setup is depicted in Fig. 1), however we stress that the framework is27

generic: although we use only stereo video in the present study, other sensors like28

LIDAR, GPS/IMU, conventional odometry, and possibly thermal cameras could29

be useful for the task. If available, such sensors should be added, and would30

certainly improve performance. We do however point out that in the automotive31

sector, and even more in robotics, there is a desire to limit the amount of sensor32

hardware, and that stereo images are at present the most successful sensor for33

detecting and localising humans during daytime (e.g. thermal cameras work well34

for detection at night and to a certain extend during the day, but it is not possible35

to reliably recover dense 3D depth; LIDAR delivers highly accurate 3D geometry,36
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but in moving platforms is limited to one or a small number of scan-lines, and37

does not enable robust object recognition).38

As building blocks for the presented system, we use several methods of pho-39

togrammetry and computer vision, which generate different measurements from40

the input images: automatic camera orientation is performed to obtain the ego-41

motion in a 3D reference frame (Sec. 2.1). Automatic image matching is applied42

to the stereo pair in each frame to obtain dense 3D depth measurements (Sec. 2.2),43

and robust geometric fitting in the dense 3D point cloud yields observations for44

the current ground plane (Sec. 2.2). Appearance-based pedestrian detection de-45

livers further observations, which indicate the putative presence and location of46

people in the field of view (Sec. 2.3).47

To fuse all these observations on a per-frame basis, we then introduce a proba-48

bilistic model of scene geometry, which combines the measured evidence to obtain49

a maximum a posteriori estimate of the ground plane as well as the 3D locations50

of pedestrians (Sec. 3). The model allows one to fuse the available evidence in a51

principled way, while still being simple enough to allow efficient inference.52

In a second step, the per-frame results are integrated over time to yield an op-53

timal estimate of the platform’s environment for the entire observation time up to54

and including the current frame (Sec. 4). Due to the high number of interacting55

people in urban traffic scenes, simply tracking each person independently is not56

sufficient for this step. We therefore include interactions between different peo-57

ple in the representation, which increases its modelling power and substantially58

improves results in practice.59

Finally, we give an extensive experimental evaluation on several long and chal-60

lenging real-world stereo sequences, in order to assess performance both quanti-61

tatively and qualitatively (Sec. 5). The paper ends with a discussion and outlook62

(Sec. 6). Some rather lengthy mathematical details have been collected in an ap-63

pendix.64

2. Pre-processing65

2.1. Camera Orientation66

In order to model and track pedestrians in 3D, a common reference frame67

must be established for the video data collected along the vehicle’s path. This68

amounts to solving for the six parameters of the stereo rig’s absolute orientation69
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(a) (b)

Figure 2: Camera resection. (a) feature binning ensures that the point distribution is suitable for

localisation. (b) tracked pedestrians are masked out, since they move w.r.t. the background scene.

in every frame.1 An obvious way of determining the absolute orientation is to70

equip the platform with a GPS/IMU unit and measure position and orientation71

directly (“direct geo-referencing”), possibly also including odometer readings.72

A different approach is classical photogrammetric triangulation: in applica-73

tions where video needs to be recorded anyway (e.g. robotics mapping) it is be-74

coming more and more popular to determine the camera orientation from observed75

scene points by resectioning. This can nowadays be performed robustly in real-76

time (“visual odometry”, [e.g. Davison, 2003; Nistér et al., 2004; Ess et al., 2008;77

Mei et al., 2009). For simplicity, the latter method is used in the experiments re-78

ported here: ego-motion estimation is purely visual. This proved to be sufficiently79

accurate for pedestrian tracking, although it would obviously be beneficial to also80

include GPS, IMU and/or odometry.81

The employed processing pipeline is straightforward: in each frame, the in-82

coming images are divided into a grid of 10×10 bins, see Fig. 2. Image regions83

corresponding to tracked people are masked out, since they violate the assumption84

of a static scene (c.f. Ess et al., 2008). In the unmasked part of the image, feature85

points are detected with the Förstner corner detector (Förstner and Gülch, 1987)86

with locally adaptive thresholds, such that the number of points per bin is approx-87

imately constant. This binning improves the feature distribution in the presence88

of uneven contrast. The local structure around the corner points is then described89

by robust SURF descriptors (Bay et al., 2008).90

1In the general case also the interior and relative orientations may need to be determined. For

our stereo rig we have confirmed that the calibration is stable.
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(a) (b)

Figure 3: Camera trajectories for Seq. LOEWENPLATZ and Seq. BELLEVUE, obtained by terres-

trial camera triangulation. Red: with bundle adjustment and using double precision. Blue: without

bundle adjustment and using single precision on the GPU (computation time < 20 ms per frame,

applicable under hard real-time constraints).

In the first frame initial 3D points are reconstructed by matching the SURF91

descriptors and triangulating the corresponding image points. The SURF vectors92

are stored as appearance descriptors for the triangulated 3D points. In each sub-93

sequent frame the image corners are matched directly to the 3D structure points,94

using a Kalman filter to predict the camera position and constrain point match-95

ing accordingly, similar to the “active search” paradigm in robotic SLAM (e.g.96

Davison, 2003).97

With the 2D-3D correspondences, the new camera orientation is found by ro-98

bust resection (RANSAC estimation of 3-point pose), and the SURF descriptors99

of the 3D points are updated. Bundle adjustment is run on a sliding window of100

18 past frames to polish the camera parameters and scene points. The camera101

parameters of older frames are discarded, as are the 3D points only supported102

by the removed frames. Importantly, points are remembered until they have not103

been matched over 18 consecutive frames, so that short occlusions (e.g. by a per-104

son) can be bridged. The robustness of SURF against viewpoint changes makes it105

possible to re-detect points after several frames.106

The system is implemented largely on the graphics card, taking advantage of107

both GPU-SURF (Cornelis and Van Gool, 2008) for feature description and the108

parallel nature of RANSAC to simultaneously generate and test multiple hypothe-109

ses for the camera pose.110

In our specific application, where the aim is not precise 3D scene reconstruc-111

tion, but a reference frame for people detection and tracking, gradual drift of the112

camera path does not hurt. Hence it is even possible to limit least-squares adjust-113
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ment only to the newly estimated orientation parameters, if computation time is114

an issue.115

Sample camera trajectories for the SmartTer platform are shown in Fig. 3, both116

with bundle adjustment over 18 frames, and with adjustment of only the last frame.117

The average uncertainty of the camera position is σx =± 1.4 cm with adjustment118

over 18 frames, respectively σx =± 2.0 cm when only adjusting the newly added119

viewpoint. The standard deviations of the viewing direction are σψ = ± 0.49◦,120

respectively σψ = ± 0.64◦. Note, the standard deviations attest only to the local121

smoothness of the camera paths, whereas the lack of tie points between distant122

frames leads to considerable drift over time, which as expected is a lot stronger if123

only adjusting a single new viewpoint.124

2.2. Dense Depth125

Since we are aiming for a 3D environment model, the scene depth w.r.t. the126

stereo rig must be measured. Again there are two main alternatives, namely direct127

range sensing, or dense image matching followed by stereo triangulation.128

While direct range measurement with LIDAR may seem the obvious choice,129

it has some important disadvantages: first of all it has significantly higher weight130

and power consumption than passive sensors, which can be important on mov-131

ing platforms; second, and more importantly, practical LIDAR systems measure132

range by sequentially scanning the field of view, which means that covering the133

relevant solid angle at an appropriate resolution takes a significant amount of time134

(typically several seconds). Hence, depth maps are not available at an adequate135

frame-rate, and when recorded from a fast-moving platform are also distorted by136

the ego-motion. Additionally, thin objects are not well modelled because of the137

limited angular resolution: the resolution of a typical high-speed laser scanner138

is 0.5◦ (0.17 m sampling distance at a range of 20 m); in comparison, the radial139

resolution of our SmartTer setup is 0.07◦. We hence prefer to recover depth from140

stereo images, in spite of the lower range accuracy. Still, sensor fusion is an im-141

portant option to consider in future work.142

Another option for 3D localisation of people detected in an image is not to143

measure depth, but instead project the foot point of a person from the image to the144

ground plane (Gavrila and Munder, 2007; Hoiem et al., 2006; Leibe et al., 2008;145

Havlena et al., 2009). While this method is also applicable with monocular video,146

it is considerably less accurate: on the one hand, 2D detection accuracy is rather147

low (typically about ± 5 pixels), and localisation errors in the image are greatly148

amplified, because the corresponding rays intersect the terrain at grazing angles;149

on the other hand, the ground surface itself cannot be reconstructed accurately150
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Figure 4: Stereo depth maps for an example image pair from Seq. LOEWENPLATZ. middle: local

smoothing, right: global optimisation. Parts that are believed to be inaccurate (by a left-right

check) are painted black. Advanced algorithms give visually better results, but take more time

and are often not necessary.

with the recording geometry of realistic vehicles (see Sec. 2.2). We thus believe151

that measuring depth is currently inevitable for 3D environment modelling.152

For a calibrated stereo pair, estimating depth is equivalent to estimating image153

disparity: w.l.o.g. the two images can be assumed to be in standard configuration,154

i.e. their epipolar lines are horizontal and corresponding lines have the same y-155

coordinate. Hence, disparity is inversely proportional to depth, and its estimation156

amounts to a 1D search for the best-matching pixel. Due to the nonlinear rela-157

tionship between disparity and depth, it is important to properly account for the158

uncertainty in all subsequent computations, see Appendix A.159

Nowadays, a plethora of stereo algorithms is available. For an overview and160

taxonomy see Scharstein and Szeliski (2002), or for a more recent update the161

associated Middlebury Stereo Evaluation Page.2 The main requirements for an162

algorithm in our application are speed and the ability to handle lack of texture.163

We present two representative methods from different extremes of the spectrum.164

Example outputs on a typical street scene are shown in Fig. 4. The fastest breed of165

stereo matchers at present are methods which alternate between depth estimation166

and smoothing of the disparity field. All operations are local and can be carried out167

in parallel. This allows for GPU implementations which take less than 20 ms per168

VGA image, e.g. Cornelis and Van Gool (2005). On the other end of the spectrum,169

the best results under difficult conditions are achieved by methods based on global170

optimisation of an appropriately designed energy function. An excellent recent171

example is the method of Zach et al. (2009). The downside is that even when172

implemented on modern GPUs, computation times per image pair exceed 1 s.173

In the context of our system, where robust methods are used to derive higher-174

level cues from raw depth, we observe that top-of-the-line stereo methods bring175

2http://vision.middlebury.edu/stereo/
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little improvement at the system level, in spite of visually superior depth maps –176

see experimental results in Sec. 5.177

Confidence map. Disparity estimation will not be accurate everywhere, due to178

problems such as occlusions, specularities, untextured areas and over-smoothing.179

Usually, algorithms simply ignore these problems and return incorrect results. To180

prevent such measurement errors from propagating, we try to label bad pixels181

according to the following two rules:182

• Appearance. If the sum of absolute intensity differences between the neigh-183

bourhoods of two matched pixels exceeds a threshold, the pixel is labelled184

as occluded. This identifies most mistakes due to occlusion.185

• Disparity. In untextured areas depth is filled in by assuming smoothness of186

the scene. If that assumption is not justified, smoothing will give different187

results depending on the viewpoint. Therefore, the disparity w.r.t. the left188

image will differ from the one w.r.t. the right image for such pixels. The189

further condition that the two disparities must be the same identifies most190

incorrect labels in untextured regions.191

This binary labelling will be captured in a confidence map C, with C(p) = 1192

indicating a valid pixel p, and C(p) = 0 an invalid one, for which no reliable193

disparity could be estimated (black pixels in Fig. 4). As can be seen, the simplistic194

smoothing of the GPU-based estimator results in far more invalid pixels. These195

pixels will be ignored in subsequent steps.196

Ground plane. An important part of the environment model for navigation is the197

terrain on which both the moving platform and the people move. It substantially198

helps pedestrian detection through the twin constraints that people should stand on199

the ground and that their height should be that of a human (Hoiem et al., 2006; Ess200

et al., 2007; Gavrila and Munder, 2007; Leibe et al., 2008). The low viewpoint201

and limited resolution of vehicle-mounted cameras do not allow one to reliably202

recover the DTM, therefore we opt for a local approximation: the terrain is mod-203

elled as a plane, which is robustly fitted to the 3D points in front of the platform,204

and dynamically updated in every video frame, to adapt terrain undulations and205

vehicle tilt due to the suspension.206

The plane is parametrised in normal form in the camera coordinate system as207

π = (n, π(4)), with the normal vector given in spherical coordinates: n(θ, φ) =208

(cos θ sin φ, sin θ sin φ, cos φ).209

The ground plane is not determined from the depth map directly, which is un-210

reliable in scenarios like ours, where it is not easy to decide which depth points211
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Figure 5: Calculation of ground plane evidence is distributed over several stripes of decreasing

size in order to alleviate the effect of uneven sampling.

really belong to the terrain. Instead, it is inferred jointly with the pedestrians,212

using the depth map as uncertain measurement – see Sec. 3. To this end a dis-213

tribution P (π|D) ∼ P (D|π)P (π) over the ground plane parameters must be214

defined, which measures the probability of a certain parameter vector π, given215

the observed depth map D. To measure the goodness-of-fit and define P (D|π),216

we consider the depth-weighted median residual between π and the depth map D,217

averaged over three horizontal stripes Si (to account for unequal sampling):218

ri(π,D)2 = med
{p∈Si|C(p)=1}

( 1

σ2
D

(n⊤D(p) − π(4))2
)

, (1)

r(π,D)2 =
1

3

( 3∑

i=1

ri(π,Di)
2
)

. (2)

Here p ∈ Si denotes the pixels from a vertical stripe of D, deemed valid by the219

confidence map (C(p) = 1). To account for the decreasing number of points at220

greater distances, the height hy(i) of the stripes Si increases towards the lower221

image border (we use the progression hy(i) = h
2(i+1)

= {120, 80, 40}, with h the222

total image height; see Fig. 5). σD accounts for the uncertainty of the plane-to-223

point distance. Given this robust estimate, we set224

P (D|π) ∼ e−r(π,D)2 . (3)

In the scene model, this distribution is complemented with an empirically225

learnt ground plane prior P (π) and combined with evidence from pedestrian de-226

tection to fit the most likely plane; see Appendix B.227
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2.3. Pedestrian Observations228

Evidence for the presence of people is generated by running a state-of-the-229

art pedestrian detector. Methods for recognising and localising people in images230

can be broadly grouped into two types: those which generate hypotheses by evi-231

dence aggregation (e.g. Leibe et al., 2005; Felzenszwalb et al., 2008), often using232

part-based human body models; and sliding-window methods, which exhaustively233

scan all positions and scales of the input image and for each window return a de-234

tection score, i.e. a pseudo-likelihood that the window contains a pedestrian. So235

far, the sliding-window approach has proved more successful in practice, despite236

its conceptual simplicity.237

Since the pioneering works of Papageorgiou and Poggio (2000) and Viola et al.238

(2003), many improvements of the basic sliding-window method have been pro-239

posed. The most common features are variants of the HOG framework, i.e. local240

histograms of gradients (Dalal and Triggs, 2005; Felzenszwalb et al., 2008; Wang241

et al., 2009), and different flavours of generalised Haar wavelets, e.g. (Viola et al.,242

2003; Dollar et al., 2009). Classifiers are mostly standard methods from statistical243

learning, predominantly support vector machines (Shashua et al., 2004; Dalal and244

Triggs, 2005; Sabzmeydani and Mori, 2007; Lin and Davis, 2008) and variants of245

boosting (Viola et al., 2003; Zhu et al., 2006; Wu and Nevatia, 2007; Wojek et al.,246

2009).247

For automotive applications, two recent surveys (Dollar et al., 2009; Enzweiler248

and Gavrila, 2009) conduct extensive experiments over several hours of urban249

driving to assess the performance of current detection algorithms. In short, it turns250

out that for large and medium-sized pedestrians (> 50 pixels) the HOG (histogram251

of oriented gradients) feature of Dalal and Triggs (2005) performs very well even252

with a linear SVM classifier. Another advantage of HOG is that it is highly par-253

allelisable – GPU implementations exceed 10 frames per second on VGA-size254

images (Wojek et al., 2008).255

In the present work we have used the standard HOG approach. In a nutshell,256

HOG collects 3D histograms over the (x, y)-location and gradient orientation257

within the sliding window. Each pixel’s contributes to the histogram is weighted258

with the local gradient magnitude, and the histogram entries are normalised over259

larger regions of (2 × 2) bins. All histogram bins are then concatenated to a fea-260

ture vector and classified with a linear SVM. For details we refer to the original261

publication (Dalal and Triggs, 2005).262

Following the original work, we scan down to a minimum window height of263

48 pixels. This corresponds to a maximum distance of about 19 m for the child264
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strollers (CharioBot, CharioBot II) and 30 m for the SmartTer platform, both as-265

suming a pedestrian height of 1.8 m. In future work, we plan to also include optic266

flow between consecutive frames, which has been shown to consistently improve267

detection in a dynamic environment (Wojek et al., 2009; Walk et al., 2010). We268

emphasise that the output of people detection is not regarded as final result, but269

rather as one more type of image measurement to be considered during inference.270

The detector is set to a low threshold to generates hypotheses, such that it may271

produce false alarms, but misses as few actual people as possible.272

3. Single-frame inference273

In real images of urban environments, the automatically generated measure-274

ments described in the previous section will not always be correct. Appearance-275

based pedestrian detection tends to become unreliable in low-contrast regions, in276

the far field, and in the presence of (partial) occlusion, which frequently occur277

between different people in the scene. Stereo matching returns inaccurate and278

even grossly wrong depths in homogeneous image areas and around specular re-279

flections. The accuracy of ground plane fitting depends both on the quality of the280

underlying depth estimates and on an unobstructed view of the ground, much of281

which is at times occluded by people, vehicles, and street furniture.282

We therefore treat the observations made by image processing and computer283

vision algorithms not as final results, but as noisy observations, from which a284

consolidated, consistent environment model shall be derived. In the following285

section we describe a probabilistic way to jointly exploit the observations. For the286

moment, we will restrict the discussion to a single stereo pair. Using input from287

pedestrian detection and dense stereo, we want to find the correct ground plane,288

identify the true people among the detector responses, and localise them in the 3D289

reference frame.290

By mapping the problem to a Bayesian network, inference can be conducted291

such that an optimal solution is found based on all input observations (Ess et al.,292

2009b). A good example to illustrate how clean probabilistic modelling allows for293

more reliable estimates is the ground plane: if it covers a large part of the image,294

it can be robustly estimated from depth, and strongly constrains pedestrians, by295

penalising people not standing on the ground; conversely, for scenes crowded296

with people, independent ground plane estimation is bound to fail because too297

little of the ground is visible – but the people themselves will constrain the ground298

plane, since a consensus is required such that all pedestrians stand on the same299

plane. In the Bayesian network both cases are naturally accounted for in a single300
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Figure 6: Probabilistic scene model for single-frame inference. For a given stereo pair, the ob-

served evidence consists on the one hand of the pedestrian detection scores I in the two images,

and on the other hand of the depth map D and the associated confidence map C. The unknown

quantities that need to be inferred are the ground plane parameters π, the presence or absence vi

of a potential pedestrian in the most likely model, and the locations ci of all present pedestrians.

The auxiliary variable di indicates whether the depth is reliable for the bounding box of a potential

pedestrian.

model. The network is shown in Fig. 6. Following standard graphical model301

notation (Bishop, 2006), the plate denotes n-fold repetition of the contained parts302

(corresponding to the n potential pedestrians).303

The input of the model are a set of potential pedestrian detections oi={ci, vi}304

found by analysing the two images I of the stereo pair, the depth map D of the305

stereo pair, and the associated confidence map C.3 The unknown variables to be306

determined are the three parameters π of the ground plane, a binary flag vi for307

each bounding box declaring it valid or invalid, and the locations ci = (xi, yi) of308

all valid boxes.309

For each potential person, back-projection of the bounding box onto the ground310

plane yields a 3D location x and height h. Its distance to the camera should then311

coincide with the dominant stereo depth inside the bounding box (within the un-312

certainty bounds). The height h should correspond to the expected height of hu-313

mans, represented by a Gaussian distribution. Furthermore, the bounding box is314

more likely to correspond to a person if its detection score is higher, and if the315

depth of most pixels inside the bounding box is constant within the measurement316

accuracy. Finally, the ground plane should match the observed scene depths, while317

at the same time passing through the foot points of the valid people.318

3Note, a simplification is made by considering the detection scores, the depth map, and the

confidence map as independent, although they are ultimately all derived from the same image

intensities.
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MAP Estimation. Inference in the model is performed according to the factorisa-319

tion320

P (π, ci, vi, di, I, C,D) ∼

∼ P (π)P (D|π)
∏

i

P (ci|π,D, di)P (vi|ci, π)P (vi|di)P (di|C)P (I|vi) . (4)

The probability for a certain person location ci depends on the geometric consis-321

tency of depth map and ground plane localisation, P (ci|π,D, di). The validity322

flag vi, which indicates whether at a certain position a pedestrian is present or323

absent, depends both on the person’s geometric location and size P (vi|ci, π), and324

on the depth distribution in the bounding box P (vi|di). The detection likelihood325

P (I|vi) is derived from the detector score of hypothesis oi. P (di|C) encodes the326

reliability of the depth map. The variables, along with their domains, are also327

summarised in Tab. B.1. Detailed definitions for the single terms in Eq. (4) are328

given in Appendix B.329

All 3D calculations are done in camera-centric coordinates, i.e. the camera330

orientation is P=(I,0). This not only simplifies calculations, but also keeps the331

ground plane parameters in a limited range that can be meaningfully trained. For332

the subsequent tracking stage, the results are transformed into world coordinates333

by applying the known absolute orientations.334

The graph of Fig. 6 is constructed for each frame of the video sequence. Once335

all probabilities have been defined, joint inference over all variables is performed336

by maximising the posterior, which can be done efficiently with Belief Propaga-337

tion (BP, Pearl, 1988): after discretising all variables and filling in their condi-338

tional probability tables (CPTs) as described in the appendix, sum-product BP339

yields the posterior marginals of the variables. Due to the loopy nature of our340

model, BP is not guaranteed to find a global optimum, but in practice it neverthe-341

less works very well, a finding also confirmed by other researchers (e.g. Murphy342

et al., 1999). The results of single-frame inference form the input for the subse-343

quent tracking step.344

4. Object Tracking345

Given the output of single-frame inference, tracking amounts to fitting a set346

of trajectories to the detected people in 3D world coordinates, such that these347

trajectories together explain the observations over time well, i.e. they have a high348

posterior probability.349
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Figure 7: Generating candidate trajectories. (a) Starting from an object detection, detections in

nearby frames are found which are within reach according to the dynamic model. (b), (c) Based on

the new detections, the trajectory is adapted. Adding new detections and updating the trajectory

are iterated forward and backwards in time. (d) For efficiency reasons, trajectories are grown

incrementally.

Since standard 1st-order Markov tracking frequently fails in multi-target sce-350

narios, we employ a hypothesise-and-verify strategy to find the set of trajectories351

that best explains the evidence from past and present frames. The hypothesise352

step samples a large, over-complete set of candidate trajectories with standard353

methods, and the verify step selects an optimal subset and discards the remaining354

candidates.355

The basic units of the tracker are candidates for possible object trajectories.356

A candidate trajectory is defined as Hj = [Sj,Mj,Aj], with Sj the supporting357

detections, Mj its dynamic model, and Aj its appearance model. At each time358

step, an exhaustive set of plausible candidates is instantiated, and pruned to a359

minimal consistent subset.360

Dynamic model. As dynamic model for candidate generation, we assume a con-361

stant velocity vector in 2D ground plane coordinates. Only few dynamic models362

are in common use: when tracking in 3D, the constant velocity assumption is the363

standard choice (e.g. Gavrila and Munder, 2007). When tracking in the image364

plane, 3D position is replaced by 2D position and object scale (Wu and Nevatia,365

2007; Zhang et al., 2008), usually again with a 1st-order dynamic model. Few au-366

thors have investigated higher-order models for erratic motions such as in sports367

(e.g. Okuma et al., 2004).368

In our implementation, we employ a standard Extended Kalman Filter (EKF,369

Gelb, 1996) to describe an individual object’s motion pattern. Specifically, we use370

an extension of linear Kalman filtering with a uni-modal Gaussian distribution of371

the current state, and 1st-order (constant velocity) motion. The model is specified372

by defining the transition function fM(·) and the measurement function fX (·)373
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(the observed location), and their respective Jacobians. The state space is st =374

[xt, yt, θt, vt]
⊤, with (xt, yt) the 2D position, θt the person’s orientation, and vt375

their speed. The latter two are initialised to 0, since for the first detection the376

speed and orientation are unknown. The transition function is377

fM(st−1, wt−1)=





xt−1 + vt−1 cos(θt−1)∆t
yt−1 + vt−1 sin(θt−1)∆t

θk−1

vt−1



+





0
0
wθ

wv



 , (5)

where wθ and wv are additive random noise in the orientation and velocity, re-378

spectively. Given a current position xst , the likelihood of an object oi located at xi379

under the motion model is380

p(oi|Mj) ∼ e−
1

2
(xi−xs

t )
⊤(Ct+Cxi

)−1(xi−xs
t ) . (6)

Here, Ct is the covariance matrix specifying the uncertainty in the system, and Cxi
381

is the localisation uncertainty of the detection, estimated from the stereo geom-382

etry (Appendix A). The latter is especially important to handle far away objects383

correctly, for which the depth uncertainty is high. Correct uncertainty modelling384

is crucial to achieve good tracking results across a large depth range.385

Observation model. We follow the tracking-by-detection approach and use the386

output of the HOG detector, together with a colour histogram in HSV space, as387

observation. The observation model for visual tracking has evolved a lot over388

the years. Early approaches often employed background subtraction (Stauffer and389

Grimson, 1999; Toyama et al., 1999), which is not applicable for moving cameras.390

Many also rely on low-level image cues such as edges (Isard and Blake, 1998)391

or local regions (Bibby and Reid, 2008) as observations, which are notoriously392

unstable. The most successful approach in recent years has been tracking-by-393

detection, which regards the output of an object detector as observation (Okuma394

et al., 2004; Avidan, 2005; Gavrila and Munder, 2007; Wu and Nevatia, 2007;395

Zhang et al., 2008; Leibe et al., 2008). For a richer description, the observation is396

often augmented with local image statistics, mostly colour histograms (e.g. Num-397

miaro et al., 2003; Okuma et al., 2004; Wu and Nevatia, 2007).398

The basis for tracking-by-detection are the pedestrian detections otii =[xi, Ci, ti, ai],399

where xi, Ci are the 2D position on the ground plane and its uncertainty, ti is the400

frame index, and ai the colour histogram describing the appearance. For a given401

frame ti, we denote by P (otii |I
ti) the probability of a person being present given402
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the image evidence (in the following, the superscript ti in omitted whenever it is403

clear from the context). Detections are accumulated in a space-time volume O404

that spans all past frames up to and including the current one. In practice, only the405

last few hundred time steps are considered, starting at some frame t0. The purpose406

of tracking hence is to fit smooth trajectories Hj to the locations [xi, ti]
⊤ within407

O.408

While xi and Ci are determined during single-frame inference, the colour409

model still needs to be defined. In our implementation a trajectory’s appearance410

Aj is represented with a (8×8×8)-bin colour histogram in HSV space. For each411

observation oi, we compute the colour histogram ai in an elliptic region inside the412

bounding box, with Gaussian weighting to put more emphasis on pixels close to413

the centre. To improve robustness, colour values are distributed over neighbouring414

histogram bins with trilinear interpolation. The similarity between a detection and415

a trajectory is then defined as the Bhattacharyya distance between their histograms416

p(oi|Aj) ∼
∑

q,r,s

√
ai(q, r, s)Aj(q, r, s) , (7)

with (q, r, s) indices over the three histogram dimensions.417

Every time a new observation oi is added to a trajectory, its appearance model418

Aj is updated with an Infinite Impulse Response (IIR) filter,419

Aj(q) = wAj(q) + (1 − w)ai(q) . (8)

The appearance model contributes to the association probability, but it is not420

propagated through the EKF, which would prohibitively increase the dimension421

of the state vector.422

4.1. Trajectory candidates423

The set of putative candidate trajectories is generated by running bi-directional424

Extended Kalman Filters (EKFs) starting from each detection in the past and425

present (for computational efficiency, only candidates starting from new detec-426

tions are generated from scratch, whereas candidates from previous frames are427

cached and extended). Each filter generates a candidate trajectory which obeys428

the dynamic model and bridges short gaps due to occlusion or detector failure –429

see Fig. 7. The important difference to conventional 1st-order Markov tracking is430

that candidates do not originate only from the previous frame.431
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Data association between trajectory candidates and detections amounts to check-432

ing how well an observed OI fits the candidate’s dynamic model Mj and appear-433

ance model Aj:434

P (oi|Hj) = P (oi|Aj) · P (oi|Mj) . (9)

The association probability P (oi|Hj) is computed for all detections at a given435

time step, and the one with the highest probability is used to update Hj (“winner436

takes all”). To prevent gross association errors P (oi|Hj) is gated to exclude overly437

unlikely associations.438

4.2. Trajectory selection439

At this point the set of candidates is highly redundant. The different candidates440

are not independent because of the constraint that two pedestrians cannot be at the441

same location at the same time, and because each detection may only be assigned442

to one trajectory so as to avoid over-counting the evidence. Selecting the most443

likely subset of trajectories amounts to a binary labelling, where each candidate is444

declared either a member or a non-member of the optimal set, such that the set is445

as small as possible and conflict-free, while at the same time explaining as much446

as possible of the evidence observed up to the present frame.447

The example in Fig. 8 visualises candidate generation and trajectory selection.448

People are standing close together, which leads to candidates that contain detec-449

tions from several different persons. Note for example the long curve going to the450

left: selecting such a candidate is suboptimal in spite of its high individual score,451

because the exclusion constraints rule out all other candidates that are based on the452

same data points, leaving many detections unexplained. Hence, a globally better453

solution is reached by selecting multiple candidates which each explain less data,454

but are mutually consistent.455

To select the jointly optimal subset of trajectories, we compute a support U456

for each candidate Hj , which is based on the strength of the associated detections457

{oi}, weighted by their association probability according to the dynamic model458

M and the appearance model A:459

U(Hj|I
t0:t) =

∑

i

U(oi|Hj, I
ti) =

=
∑

i

P (oi|I
ti) · P (oi|Aj) · P (oi|Mj) .

(10)

Choosing the best subset {Hj} from the list of all candidates is a model selec-460
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(a) (b) (c) (d)

Figure 8: Tracking by means of a hypothesise-and-test framework: given object detections from

the current and past frames (a), we construct an exhaustive, over-complete set of trajectory hy-

potheses (b) and prune it back to an optimal subset with model selection (c), yielding the final

trajectories (d).

tion problem. If we restrict ourselves to interactions between pairs of candidates4
461

the optimum is given by the quadratic binary expression462

max
m

[D(m)] = max
m

[
m⊤Qm

]
, m ∈ {0, 1}N . (11)

The Boolean vector m indicates whether a candidate shall be selected (mi = 1)463

or discarded (mi = 0). The diagonal entries qii are the individual utilities of the464

candidates, reduced by a constant “model penalty”, which expresses the prefer-465

ence for solutions with fewer trajectories. The off-diagonal entries qij≤0 encode466

the interaction cost between candidates i and j. They are composed of a penalty467

proportional to the overlap of the two trajectories’ footprints on the ground plane,468

and a correction term for the over-counting of detections consistent with both can-469

didates, that would occur if both are selected.470

qii = − ǫ1 +
∑

o
tk
k

∈Hi

(
(1−ǫ2)+ǫ2U(otii |Hj, I

ti)
)

qij = −
1

2
ǫ3O(Hi, Hj) −

1

2

∑

o
tk
k

∈Hi∩Hj

(
(1−ǫ2)+ǫ2U(otii |Hℓ, I

ti)
)

,
(12)

where Hℓ ∈{Hi, Hj} denotes the weaker of the two candidates; O(Hi, Hj) mea-471

sures the physical overlap between the candidates based on average object dimen-472

4Disregarding higher-order interactions results in too high penalties in cases where more than

two trajectories compete for the space and/or detections; if interaction penalties are high enough

to enforce complete exclusion, this will not alter the result.
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sions; ǫ1 is the “model penalty” chosen such that it neutralises the utility of ≈ 2473

strong detections (to suppress erratic false detections); ǫ2 is a regulariser to guar-474

antee a minimal utility for each explained detection – smaller ǫ2 reduces the influ-475

ence of the goodness-of-fit, and puts more weight on the fact that a detection could476

be associated with the candidate at all; ǫ3 is the scaling coefficient of the overlap477

penalty, and should be chosen large enough to prevent simultaneous selection of478

trajectories with significant overlap. The maximisation problem Eq. (11) is NP-479

hard, but due to its special structure strong local maxima can be found efficiently.480

Details about the optimisation algorithm are given in appendix Appendix C.481

Besides establishing 3D trajectories, tracking also acts as a temporal smooth-482

ing filter: false detections consistent with the scene geometry are weeded out, if483

they lack support in nearby frames, and conversely missed detections on good tra-484

jectories are filled in. Note that starting from an exhaustive set of candidates by485

definition solves the initialisation of new trajectories (usually after 2-3 detections),486

and allows one to recover from temporary track loss and occlusion.487

Person Identities. Trajectory selection is repeated at every frame. The selected set488

offers the most likely explanation of the observed data in the current frame and489

in the past. It is hence possible to follow trajectories back in time and determine490

where a person came from, even if that person had previously been missed. On491

the downside, the new explanation is not guaranteed to be consistent with the492

one selected previously. Identities hence have to be propagated by checking the493

overlap between trajectories found at consecutive time steps.494

5. Experimental Evaluation495

We present experimental results on four different sequences. In all cases, the496

sensors were a pair of forward-looking AVT Marlin F033C cameras, which deliver497

synchronised video streams of resolution 640×480 pixels at 12–14 frames per498

second. Sequences BAHNHOFSTRASSE (999 frames) and LINTHESCHER (1208499

frames) have been recorded with a child stroller (baseline ≈ 0.4 m, sensor height500

≈ 1 m, aperture angle ≈ 65◦) in busy pedestrian zones, with people and street501

furniture frequently obstructing portions of the field of view. LOEWENPLATZ (800502

frames) and BELLEVUE (1500 frames) have been recorded from a car (baseline503

≈ 0.6 m, sensor height ≈ 1.3 m, aperture angle ≈ 50◦) driving on inner-city streets504

among other vehicles. Pedestrians appear mostly on sidewalks and crossings, and505

are observed only for short time spans. The sequences were recorded in autumn506

and winter and exhibit realistic lighting and contrast. Videos of tracking results507

are available as supplementary material.508
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Figure 9: Single-frame performance evaluation. See text for details.

For testing, all system parameters were kept constant throughout all sequences509

except for the platform-dependent parameters: camera calibration, camera height,510

and ground plane prior (which depends on the wheelbase and suspension of the511

platform).512

5.1. Quantitative Results.513

Per-frame evaluation. To assess single-frame performance, the bounding boxes514

estimated with different thresholds are compared to manually annotated ground515

truth, plotting the recall (fraction of correctly found pedestrians) over false posi-516

tives per image (FPPI). A bounding box is deemed correct if its intersection with517

the ground truth box is > 50% of their union.518
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In Fig. 9(a) we evaluate the single-frame performance of different variants of519

the system on Seq. BAHNHOFSTRASSE, and also compare to competing methods.520

The HOG detector without any scene information already performs reasonably521

well (“Detector”). Single-frame inference with added 3D geometry improves per-522

formance by 5–15% (“Bayesian net”). Multi-frame tracking (“Tracker”) further523

improves the reachable recall, but loses recall in the high-precision regime, which524

is largely an effect of per-frame evaluation: since the tracker needs to accumulate525

2–3 detections before starting a trajectory, it loses recall every time a new per-526

son enters the scene. At the often quoted operating point of 1 FPPI, the tracker527

achieves 73% recall.528

To assess the gain of multi-hypothesis tracking, we reduce our system to a 1st-529

order Markov tracker, which follows each trajectory independently, starting new530

trajectories from unassigned detections. It reaches 55% recall, similar to the raw531

detector, which underpins the need for multi-frame interaction reasoning.532

On the same sequence Zhang et al. (2008) report 70% recall at 1 FPPI.5 They533

do not use stereo, but track in image coordinates in batch mode, i.e. trajectories534

are only found once the detections over the entire video sequence are available to535

the tracker. Bajracharya et al. (2009) report 58% recall on this sequence at 1 FPPI536

with a tracker that does use stereo (and 42% recall on Seq. LINTHESCHER, see537

below).538

In Fig. 9(b)-(d), we show results on further sequences. As above, single-frame539

detection performance is measured, hence the tracker suffers from an initial la-540

tency – the effect is more pronounced for Seq. LOEWENPLATZ, because it con-541

tains many briefly visible pedestrians. Note however, tracking is indispensable for542

motion prediction and dynamic path planning. Ground truth annotations cover all543

pedestrians, including those in the far distance. We show both the performance544

on all annotated pedestrians (blue curves) and the performance in the near and545

midrange (red curves).546

In Table 1, we compare the influence of the employed stereo algorithm on547

the result, since existing algorithms differ considerably in terms of quality and548

runtime (c.f. Sec. 2.2). Specifically, we compare two GPU-based dense stereo549

matchers: fast plane sweep stereo (“PS”, Cornelis and Van Gool, 2005), and a550

recent top-of-the-line method (“Zach”, Zach et al., 2009). Modern algorithms551

indeed improve the performance of both scene analysis and tracking, but the gains552

5All data is publicly available at http://www.vision.ee.ethz.ch/˜aess/

dataset/.
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FPPI full depth range restricted to 15 m

Detector Tracker Detector Tracker

no depth 0.5 — 0.19 — 0.32

1.0 — 0.29 — 0.47

PS 0.5 0.63 0.60 0.66 0.66

1.0 0.68 0.70 0.67 0.74

Zach 0.5 0.65 0.64 0.67 0.73

1.0 0.67 0.73 0.67 0.78

Table 1: Single-frame results on Seq. BAHNHOFSTRASSE with different stereo matchers. Better

depth maps improve localisation and tracking in the near field. Since we use robust statistics on

depth, elaborate stereo algorithms bring little improvement at the system level.

are modest and come at the cost of much higher runtime (20 ms for PS vs. >1 s553

for Zach). It appears that when depth maps are treated as intermediate result and554

processed with robust statistics, high-end stereo does not help much, in spite of555

visibly better depth maps. On the contrary, it is indispensable to measure depth,556

even though the last bit of accuracy is not crucial: bypassing stereo all together557

and estimating depth from bounding box size gives abysmal results.558

Track-level Evaluation. To also evaluate the tracking in more detail, we quanti-559

tatively evaluate on the trajectory level in Table 2. There are still no satisfactory560

methods for automatic track-level evaluation, hence the correspondence between561

estimated and actual trajectories had to be verified interactively.562

BAHNHOFSTRASSE LOEWENPLATZ

ground truth 89 107

tracker 125 126

mostly tracked 0.55 0.48

partially tracked 0.30 0.27

mostly missed 0.15 0.25

false alarms 0.62 1.09

ID switches 16 6

mean/median latency 9.9 / 1.5 0.3 / 2.0

Table 2: Trajectory-based evaluation on Seq. BAHNHOFSTRASSE and Seq. LOEWENPLATZ.

Following other trajectory-level evaluations (Wu and Nevatia, 2007; Li et al.,563

2009), we examine all ground truth subjects and classify them in one of three564

categories: mostly tracked (covered to >80% by the best estimated trajectory),565
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Figure 10: Precision of the tracker prediction for increasing prediction horizon. Data was recorded

at 12–14 fps.

partially tracked (covered 20-80%), or mostly missed (covered <20%). Further-566

more we report the number of ground truth trajectories and the number of trajecto-567

ries output by the tracker, the average number of false alarms per frame, the total568

number of identity switches (cases where a new trajectory is started although the569

subject is still the same), and the mean and median latency (the number of frames570

until a trajectory is initialised for a new subject).571

In both cases, few false alarms occur, and few trajectories are mostly missed.572

The fraction of partially tracked subjects, and for Seq. BAHNHOFSTRASSE the573

mean latency, are high: it happens frequently that a distant pedestrian is visible574

for a few frames, then disappears into occlusion and reappears at smaller distance,575

where he is picked up by the tracker. In the best case this will produce an identity576

switch (since the occlusion lasts too long to associate the two trajectories), but577

more often the subject will be picked up for the first time only after the occlusion578

is then reported as mostly missed or partially tracked. For this reason the mean579

latency is a lot higher than the median on Seq.BAHNHOFSTRASSE: the entire580

track before and during occlusion counts as latency. 9 out of 76 persons fall into581

this category and have latencies >30 frames. In fact, most other partially tracked582

subjects are quite well covered – 17% of them lie between 70 and 80%.583

Prediction. Since the aim of people tracking in traffic is to react to their behaviour,584

either by appropriate path planning, or by an emergency manoeuvre, we also as-585

sess how well future locations can be predicted from the estimated trajectories. To586

this end, we count the precision of bounding boxes extrapolated to future frames,587

and plot them for varying time horizon in Fig. 10. As expected, precision drops588

with increasing look-ahead, but remains acceptable up to ≈ 1 second (12 frames).589
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Figure 11: Example results for Seq. LINTHESCHER.

The plot illustrates the worst-case scenario: usually a precision of 0.9 does not im-590

ply that re-planning fails in 1 out of 10 frames, because not all pedestrians affect591

the planned path.592

5.2. Qualitative Results593

In this section we illustrate the behaviour of the described tracking method594

with example images. Fig. 11 shows an example from Seq. LINTHESCHER fea-595

turing multiple full occlusions (the woman crossing in the foreground temporarily596

occludes every other person).597

Fig. 12 shows how both adults and children are tracked in Seq. BAHNHOFS-598

TRASSE, although the latter deviate significantly from the typical height and as-599

pect ratio. In the bottom row, a situation is shown where tracking is superior to600

mere object detection: without motion prediction, the man in the pink bounding601

box would possibly cause an unnecessary avoidance manoeuvre.602

In Fig. 13 pedestrians are tracked from a driving car, with the camera rig603

mounted on the roof. People are visible for shorter periods, since they are either604

passed at high speed or cross the street in front of the vehicle.605

6. Conclusion606

6.1. Summary607

We have described a system for detection and 3D localisation of people in608

street scenes recorded from a mobile stereo rig. The system is able to track mul-609

tiple people in 3D world coordinates, based on image-based pedestrian detection610

and dense stereo depth. Robustness is achieved by611

1. treating automatic image measurements as noisy observations, from which612

a per-frame estimate of the 3D environment is derived by MAP estimation613

in a probabilistic scene model, and614
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Figure 12: Example results for Seq. BAHNHOFSTRASSE.

2. multi-hypothesis tracking based on the per-frame estimates to find, in each615

time step, the people trajectories which best explain all past and present616

evidence.617

The system has been tested on several realistic stereo sequences, including both618

quantitative comparisons to ground truth annotations and qualitative analysis of619

the system’s ability to track and predict pedestrian motion.620

6.2. Outlook621

The presented work should be seen as an initial attempt to combine close-622

range photogrammetry of dynamic scenes and automatic image understanding.623

There are several promising directions for future research in this area.624

Obviously, sensor fusion will play an important role. Due to the variety of625

tasks, a large array of sensors could be useful, from the obvious GPS/IMU for self-626

localisation to more exotic sensors such as thermal cameras for human detection,627

or terrestrial multi-spectral sensing for the more ambitious goal of dense scene628

understanding.629

In terms of algorithms, multi-class detection is still an open research ques-630

tion. It may be possible to extend the current detection (and/or pixel labelling)631
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Figure 13: Example results for Seq. LOEWENPLATZ.

paradigms to a handful of classes, but scalable classification of the large variety of632

objects in our environment at a reasonable level of abstraction is still out of reach.633

For the specific case of humans, more detailed modelling is of interest to bet-634

ter describe and predict behaviour: on one hand, also estimating a person’s ar-635

ticulation (rather than only their position in space) may improve prediction of636

their future motion, and has also been shown to improve detection itself in cer-637

tain situations (Andriluka et al., 2008); on the other hand, the motion planning638

of real people is not independent of their environment, so including models of639

social behaviour such as those developed for crowd simulation (e.g. Helbing and640

Molnár, 1995; Schadschneider, 2001) could potentially improve dynamic models641

(c.f. Pellegrini et al., 2009). Note, both tasks pose additional challenges, since642

significantly more parameters have to be determined from the same data.643

In terms of photogrammetric methodology, the analysis of highly dynamic644

environments could well lead to a revival of dense stereo reconstruction, which645

has in recent years been somewhat over-shadowed by laser ranging, but offers the646

important advantage that strictly synchronous measurements can be acquired over647

a large solid angle. A comeback of dense stereo would be in line with another648

26



0 20 40 60 80 100 120 1400

10

20

30

40

50

60

70

80

90

100

Disparity

De
pt
h

CharioBot
SmartTer

(a)

0 5 10 15 20 25 30 35 40 45 500

1

2

3

4

5

6

7

8

9

10

Depth

Ac
cu
ra
cy

CharioBot
SmartTer

(b)

Figure A.1: The uncertainty of depth estimation depends on the focal length and the baseline.

(a) Relation of disparity to depth for both setup types. (b) Localisation accuracy at given depths.

SmartTer’s larger baseline allows accurate localisation at larger depths.

trend towards what could be called “low-precision photogrammetry” in the close-649

range domain: in many applications, including the one presented here, the critical650

factor is the completeness of the estimated model, whereas metric precision is –651

within reasonable bounds – less of an issue.652
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Appendix A. Accuracy of stereo depth659

Given the focal length fu in pixels, the camera baseline B in world units and660

the disparity d between the two images of a stereo pair, the depth z of a point w.r.t.661

the camera is662

z =
fuB

d
. (A.1)

Thus, the working range, respectively accuracy, of a stereo rig is primarily de-663

termined by the focal lengths of the cameras and the baseline. Fig. A.1 illustrates664

the relationship between disparity and depth for our CharioBot and SmartTer se-665

tups, as well as the corresponding depth uncertainty. If we define the “working666
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range” to be that part of the common field of view for which the localisation error667

σz is below 1 m, we get a range of 1.5 to 15 m for the CharioBot platforms. The668

pedestrian detector theoretically can pick up people up to a distance of 19 m, cor-669

responding to a localisation uncertainty of 1.5 m. For the longer SmartTer baseline670

the working range is 3.8 to 22 m, with the detector reaching 30 m / σz=1.8 m.671

Using error propagation, the localisation uncertainty of the stereo system can672

be inferred from the measurement uncertainty (σu, σv) of a pixel with position673

(u, v) and the uncertainty σd of the disparity estimate d. We can write the back-674

projection as675

f(u, v, d) =
B

d
(u, v · svu, fu)

⊤ . (A.2)

Forward error propagation (taking into account that in practice svu≈1) yields the676

uncertainty covariance of a reconstructed 3D point as677

C =

(
∂f

∂u

)⊤



σu 0 0
0 σv 0
0 0 σd




(

∂f

∂u

)
=




σu + σdb

2u σdb
2uv σdfb2u

σdb
2uv σv + σdb

2v σdfb2v
σdfb2u σdfb2v σdf

2b2



 ,

(A.3)

with b= B
d2

. The uncertainty grows quadratically with increasing depth. Increasing678

baseline or image resolution will linearly decrease the uncertainty.679

Appendix B. Probabilities in the Bayes net680

The basic building blocks of the probabilistic scene model are the probability681

distributions of the single variables in Eq. (4). This section describes in detail,682

how these distributions are modelled.683

Appendix B.1. Depth evidence684

The depth map D is regarded as noisy observation to account for inaccuracies685

and gross errors of stereo matching. Using the confidence map, we make use of686

the observed depth in a robust manner: each object hypothesis is assigned a depth687

flag di ∈ {0, 1}, which indicates whether the depth map for its bounding box is688

reliable (di = 1) or not. This flag’s evidence is inferred from the confidence map689

C and is encoded in P (di|C).690

The consistency between the stereo depth z(D,bi) measured inside the bound-691

ing box bi and the depth z(oi) obtained by projecting the bounding box to the692

ground plane serves as an indicator for P (ci|π,D, di = 1). Second, we test the693

depth variation inside the box and define P (vi=1|di=1) to reflect the expectation694
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Var. Meaning Domain

Observed

I Images of camera pair

D Depth maps of camera pair

C Confidence maps

Output / Hidden

ci Object centre point and scale {{k, l}|k = 1 . . . K, l = 1 . . . L}
vi Object validity {0, 1}
di Validity of depth per object {0, 1}

π Ground plane

{
{φ, θ, π(4)}|

φ, θ = 1 . . . 6,

π(4) = 1 . . . 20

}

Table B.1: Variables of the model, along with their domains.

that the depth is largely uniform when a pedestrian is present. In detail, the two695

terms are defined as follows: the median depth inside a bounding box bi,696

z(D,bi) = med
pixel p∈bi

D(p)(3) , (B.1)

yields a robust estimate of the corresponding object’s depth. With the measure-697

ment uncertainty σ2
(z),i = C

(3,3)
i from Eq. (A.3), this yields698

P(z),i(z(oi)) ∼ N (z(oi); z(D,bi), σ
2
(z),i) . (B.2)

P(z),i(z(oi)) thus models the probability that a given object distance z(oi) cor-699

responds to the measured depth of the bounding box. As described later under700

heading detection evidence, it is used to measure the consistency between a de-701

tected bounding box and the depth map.702

To measure depth uniformity, we compute the depth variation of the pixels p703

within bi, V ={D(p)(3)−z(D,bi)|p∈bi}. Depth uniformity is measured by the704

normalised count of pixels in the confidence interval ±σ(z),i, disregarding values705

outside the inter-quartile range [LQ(V ),UQ(V )] to be robust against outliers and706

points outside a person’s silhouette:707

ηi =

∣∣{a ∈ [LQ ,UQ ]|a2 < σ2
(z),i}

∣∣

UQ − LQ
. (B.3)

This robust “depth inlier fraction” serves as basis for learning P (vi|di = 1), as708

described below in Sec. Appendix B.3. The probability P (vi|di = 0) is assumed709
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uniform, since incorrect regions in the depth map hold no information about ob-710

ject presence. P (di|C) is learnt from a training set with annotated ground truth711

pedestrians.712

Appendix B.2. Ground plane713

To keep computations tractable, the range for the ground plane parameters714

(θ, φ, π(4)) is restricted to the intervals observed in the training sequences, and dis-715

cretised to a (6×6×20) grid. The discretisation is chosen to keep quantisation errors716

< 0.05 for θ and < 0.01 for φ, resulting in errors < 5 ·10−7 in the entries of n. The717

depth errors ensuing from the discretisation are < 0.2 m in depth for a pedestrian718

at a distance of 15 m. The prior distribution P (π) is also estimated from the same719

training sequences: in input images with few objects, Least-Median-of-Squares720

(LMedS, Rousseeuw and Leroy, 1987) fitting to the depth map D yields correct721

estimates of the ground plane. with the robust median residual of Eq. (2)722

π = min
πi

r(πi,D) . (B.4)

Fitting ground plane parameters to all images of the training set with Eq. (B.4) we723

learn P (π).724

Appendix B.3. Detection evidence725

Pedestrian hypotheses oi = {vici}, (i = 1 . . . n) for each stereo pair are gen-726

erated with the HOG detector, set to a low threshold to ensure maximum recall.727

This typically yields 10–100 putative detections per time step. These consist of a728

centre point in 2D image coordinates, along with a scale: ci = {x, y, s}; and of a729

binary flag vi ∈ {0, 1} indicating the presence or absence of a person at that posi-730

tion. Given a specific c and a standard object size (w, h) at scale s=1, a bounding731

box can be constructed. The box base point in homogeneous image coordinates732

g=(x, y + 1
2
sh, 1) is projected to 3D by casting a ray and intersecting it with the733

ground plane, yielding the point734

G = −
π(4)

K
−1g

n⊤K−1g
. (B.5)

K denotes the camera’s internal calibration. The object’s depth is thus z(oi) =735

‖Gi‖. The box height Gh
i is obtained in a similar fashion, by intersecting another736

ray through the bounding box’s top point with a fronto-parallel plane, orthogonal737

to the ground.738
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Figure B.1: Centre distributions normalised by detected scale s̃ (left: centre (ỹ−y)/s̃, right: scale

(s̃ − s)/s̃), learnt from 1,578 annotations. We approximate these using normal distributions.

Because of the large localisation uncertainty of appearance-based detection,739

the detector estimates for centre and scale are again only considered as observa-740

tions (x̃i, ỹi, s̃i). Using the detector output directly would often yield misaligned741

bounding boxes, which in turn lead to wrong estimates for distance and size. In-742

stead, we estimate the centre and scale, by considering a set of possible bounding743

boxes b
{k,ℓ}
i for each oi. Around the detector output, a discrete set of bounding744

boxes are sampled: yi= ỹi+kσys̃i, si= s̃i+ℓσss̃i (xi= x̃i is fixed due to its negli-745

gible influence). The step sizes σy and σs are inferred from detections and ground746

truth annotations on a training set. Fig. B.1 shows the resulting scale-normalised747

measurements (ỹ−y)/s̃, (s̃−s)/s̃. The distributions are represented by zero-mean748

Gaussians, which is a reasonable approximation, as can be seen in the figure.749

The number of samples, i.e. the range of {k, ℓ}, is fixed for all objects. An750

object can thus be assigned one out of a discrete set of position/scale pairs (in751

our implementation 3×3 steps worked best), each corresponding to a different 3D752

height and distance. In the following, we omit the superscripts for readability.753

By means of Eq. (B.5), P (vi = 1|ci, π) ∼ P (Gh
i )P

(
z(oi)

)
is expressed as the754

product of a prior on object distance P
(
z(oi)

)
, and a prior on object size P (Gh

i ).755

The object size distribution is assumed to be Gaussian, P (Gh)∼N (1.7, 0.0852)756

[m]. The distance distribution P
(
z(oi)

)
is assumed uniform in the system’s oper-757

ating range (2–30 m for CharioBot and CharioBot II; 3–50 m for SmartTer).758

It is difficult to model the dependence of P (ci|π,D, di = 1) on the forward-759

projected object depth z(oi) and the depth map measurement z(D,bi) exactly.760

In practice, we model only the dominant factor P(z),i

(
z(oi)

)
from Eq. (B.2). We761

found that modelling both factors with a learnt non-parametric distribution yields762

inferior results. P (ci|π,D, di=0) is assumed uniform.763
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Figure B.2: Distribution of depth inliers for correct (a) and incorrect (b) detections, learnt from

1,578 annotations and 1,478 negative examples. Based on these distributions, we learn a classifier

using logistic regression.

The detector reliability P (I|vi) is learnt by logistic regression on a training764

set of correct and incorrect detections with their associated detection scores. A765

similar procedure is used to learn P (vi|di = 1): we measure the fraction ηi of766

pixels that are uniform in depth for bounding boxes in the training data, using767

Eq. (B.3). We do this for both correct and incorrect bounding boxes and fit a768

sigmoid with logistic regression for P (vi|di = 1). Fig. B.2 illustrates that ηi is a769

reasonable indicator of object presence.770

The depth validity flag di is derived from the confidence map C. Let C> denote771

the case that > 50% of the pixels inside the bounding box are marked “confident”,772

i.e. the depth information is reliable. With the same training set as above we obtain773

P (di=1|C>)≈0.96. The probability of a valid depth in a non-confident region is774

set to P (di=1|¬ C>)=0.775

Appendix C. Optimal Trajectory Selection776

Due to the pairwise constraints between different candidate trajectories, the777

multi-person tracking problem translates to the quadratic pseudo-Boolean max-778

imisation problem Eq. (11).779

The complexity of maximising Eq. (11) w.r.t. m is combinatorial. Luckily,780

heuristics exist to find strong local maxima (Schindler et al., 2006; Rother et al.,781

2007). The non-zero entries of m corresponding to the maximum D̂(m) indicate782

which candidates form the best set of trajectories for the current frame.783
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CPT Description

Ground plane

P (π) prior learnt from sequence

P (D|π) diagonal entries only, Eq. (3)

Objects

P (ci|π,D, di = 1) distance correspondence, Eq. (B.2)

P (ci|π,D, di = 0) uniform distribution, no comparison possible

P (vi|di = 1) assumption of object flatness, Eq. (B.3)

P (vi|di = 0) uniform distribution

P (vi|ci,π) height and distance assumptions, P (Gh
i )P (z(oi))

P (I|vi) object detection probability

Depth

P (di|C) depth validity depending on confidence map

Table B.2: Summary of conditional probability tables (CPTs) employed in the model, with their

respective factors.

To find the optimum, we use an extended version of the multi-branch search of784

Schindler et al. (2006). The method exploits the fact that the number of actual tra-785

jectories is comparatively small, and performs a “controlled combinatorial explo-786

sion” by reducing the number of branches to be followed in each step in geometric787

progression. Since the function D is submodular (qii>0, and qij≤0 ∀i 6= j), the788

path to the global maximum can never contains descending steps: starting from789

some vector m′, the next inspected solution m′′ must fulfil D(m′′) > D(m′).790

We point out a tighter bound: given m′, let L′ be the set of candidates currently791

not selected, {∀i ∈ L′ : m′
i = 0}, and denote by 1i a vector that contains all 0s792

except at entry i. Starting from m′, the maximally reachable score is bounded793

above by794

s = D(m′) + max
[
0,

∑

i∈L′

(D(m′ + 1i) −D(m′))
]

. (C.1)

The intuitive meaning of this is that the benefit of adding all unselected candidates795

to the current solution would be highest if they all were independent, and can only796

go down if there are any interactions among them.6 It follows that one can quit a797

search branch as soon as the best objective value found so far exceeds the upper798

bound Eq. (C.1). This early bail-out reduces the number of search steps by 37%.799

6This is the defining property of submodularity; c.f. Boros and Hammer (2002).
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