
Shape-From-Recognition:

Recognition enables Meta-data Transfer

Alexander Thomas a Vittorio Ferrari b Bastian Leibe c

Tinne Tuytelaars a Luc Van Gool b,a

aESAT/PSI-VISICS/IBBT, Catholic University of Leuven, Belgium
bBIWI, ETH Zürich, Switzerland

cUMIC Research Centre, RWTH Aachen University, Germany

Abstract

Low-level cues in an image not only allow to infer higher-level information like the
presence of an object, but the inverse is also true. Category-level object recognition
has now reached a level of maturity and accuracy that allows to successfully feed
back its output to other processes. This is what we refer to as cognitive feedback. In
this paper, we study one particular form of cognitive feedback, where the ability to
recognize objects of a given category is exploited to infer different kinds of meta-
data annotations for images of previously unseen object instances, in particular
information on 3D shape. Meta-data can be discrete, real- or vector-valued. Our
approach builds on the Implicit Shape Model of Leibe and Schiele [1], and extends
it to transfer annotations from training images to test images. We focus on the
inference of approximative 3D shape information about objects in a single 2D image.
In experiments, we illustrate how our method can infer depth maps, surface normals
and part labels for previously unseen object instances.

Key words: Computer Vision, Object recognition, Shape-from-X

1 Introduction

When presented with a single image, a human observer can deduce a wealth of
information, including the overall 3D scene layout, material types, or ongoing
actions. This ability is only in part achieved by exploiting low-level cues such as
colors, shading patterns, textures, or occlusions. At least equally important is

Email address: alexander.thomas@esat.kuleuven.be (Alexander Thomas).

Preprint submitted to Elsevier 8 April 2009

Fig. 1. Humans can infer depth in spite of failing low-level cues, thanks to cogni-
tive-feedback in the brain. In the left photo, recognizing the buildings and the scene
as a whole injects extra information about 3D structure (e.g. how street scenes are
spatially organized, and that buildings are parallelepipeda). In turn this enables, e.g.,
to infer the vertical edges of buildings although they do not appear in the image, and
the relative depths between the buildings. Similarly, recognizing the car and knowing
car lacquer is highly reflective allows to correctly estimate the depth for the center
part of the right photo, in spite of contradictive local cues.

the inference coming from higher level interpretations, like object recognition.
Even in the absence of low-level cues, one is still able to estimate depth, as
illustrated by the example of Fig. 1. 1

These observations are mirrored by neurophysiological findings, e.g. Rockland
and Hoesen [2], as ‘low-level’ areas of the brain do not only feed into the ‘high-
level’ ones, but invariably the latter channel their output into the former. The
resulting feedback loops over the semantic level are key for successful scene
understanding, see e.g. Mumford’s Pattern Theory [3]. The brain seems keen
to bring all levels into unison, from basic perception up to cognition.

In this work, local object characteristics and other meta-data are inferred from
a single image, based on the knowledge of similar data for a set of training
images of other instances of the same object class. This annotation is intensely
linked to the process of object recognition and segmentation. The variations
within the class are taken into account, and the observed object can be quite
different from any individual training example. In our approach, pieces of an-
notation from different training images are combined into a novel annotation
mask that matches the underlying image data. By using 3D shape information
as meta-data, we are effectively able to infer approximative 3D information
about recognized object instances, given just a single 2D image. As example
application, take a car entering a car wash (see bottom of Fig. 14). Our tech-
nique allows to estimate the relative depth and surface orientations for each
part of the car, as well as to identify the positions of the windshields, car
body, wheels, license plate, headlights etc. This allows the parameters of the

1 Melbourne skyline photo by Simon Ho

2

car wash line to better adapt to the specific car.

The paper is organized as follows. After discussion of related work, we reca-
pitulate the Implicit Shape Model of Leibe et al. [1] for simultaneous object
recognition and segmentation (section 3). Then follows the main contribution
of this paper, as we explain how we transfer meta-data from training images to
a previously unseen image (section 4), for both discrete and real-valued meta-
data. We demonstrate the viability of our approach by transferring depth maps
and surface orientations for cars, as well as object part labels for both cars
and wheelchairs (section 5). Section 6 concludes the paper.

2 Related Work

Several previous examples of cognitive feedback in vision have already been
implemented. Hoiem et al. [4] propose a general framework which embeds the
separate mechanisms of object detection and scene geometry estimation into
a cognitive loop. Objects can be more reliably detected and false-positive de-
tections in improbable locations are filtered out based on the automatically
estimated geometry of the scene (e.g. people on trees). In turn, object de-
tections allow to improve scene geometry estimation. In [5], a similar idea
is applied to images taken from a moving vehicle, using car and pedestrian
detections to improve ground-plane and scene depth estimation in a city envi-
ronment. However, these systems only couple recognition and crude 3D scene
information (the position of the groundplane). Here we set out to demon-
strate the wider applicability of cognitive feedback, by inferring ‘meta-data’
such as 3D object shape, the location and extent of object parts, or material
characteristics, based on object class recognition. Given a set of annotated
training images of a particular object class, we transfer these annotations to
new images containing previously unseen object instances of the same class.

The inference of 3D information from single 2D images has been an ongoing
research topic for decades. Inspired by Biederman’s component theory [6], the
goal initially was to infer hierarchical 3D structure for objects in a 2D image.
Many of the first systems used line drawings (e.g. [7]), implicitly assuming
that the problem of obtaining an accurate line drawing from arbitrary 2D im-
ages would be solved in the future. Recently, there has been a trend towards
inferring qualitative, rather than detailed 3D shape from single real-world
photos. Hoiem et al. [8] estimate the coarse geometric properties of an entire
scene by learning appearance-based models of surfaces at various orientations.
The method focuses purely on geometry estimation, without incorporating an
object recognition process. This means that in a complex scene, it is impos-
sible to infer separate object identities from the inferred scene composition.
Their system relies solely on the statistics of small image patches, and is opti-

3

mized for a very coarse set of surface orientations and a classification between
ground, vertical and sky for the entire scene. In [9], Sudderth et al. combine
recognition with coarse 3D reconstruction in a single image, by learning depth
distributions for a specific type of scene from a set of stereo training images.
The reconstructions are limited to sparse point-cloud based models of large-
scale scenes (e.g. offices), not detailed models of individual objects which are
the focus of our work. In the same vein, Saxena et al. [10] are able to recon-
struct coarse depth maps from a single image of an entire scene by means of
a Markov Random Field. As in [8], the method relies solely on statistics of
image patches, and their spatial configuration inside a typical scene. Therefore
it cannot exploit knowledge about specific object types in the scene, and con-
versely, the presence of objects cannot be inferred from the system’s output.
Han and Zhu [11] obtain quite detailed 3D models from a single image. Their
method uses graph representations for both the geometry of the objects and
their relations to the scene. To extract the graph representation from the image
and estimate the geometry, a sketch representation of the objects is generated.
This limits the method to objects that can be represented by a set of lines or
have prominent edges, like trees or polyhedra. Hassner and Basri [12] infer 3D
shape of an object in a single image from known 3D shapes of other members
of the object’s class. Their method is specific to 3D meta-data though, and the
object is assumed to be recognized and segmented beforehand. Their analysis
is not integrated with the detection and recognition of the objects, as is ours.

The above-mentioned works all focus on the estimation of depth cues from a
single image. A more general framework is the work on image analogies, where
a mapping between two given images A and A′ is transferred to an image B to
get an ‘analogous’ image B′. As shown in work by Hertzmann et al. [13] and
Cheng et al. [14], mappings can include texture synthesis, superresolution and
image transformations like blurring and artistic filters. Most closely related
to our work is the mapping that is called ‘texture-by-numbers’, where A is a
parts annotation of a textured image A′. This allows to generate a plausible
textured image from a new annotation B. Even though no example is shown in
the cited works, it should be possible to do the inverse mapping, i.e. annotate
an unseen image. However, the image analogies framework is also limited to
local image statistics, and does not involve a deeper understanding of the
structure of the image.

Other methods focus on segmentation only, which can be considered a specific
type of meta-data. Kumar et al. [15] combine Layered Pictorial Structures with
a Markov Random Field to segment object class instances. Because the LPS
correspond to object parts, a rough decomposition of the object into parts can
also be inferred. Unsupervised learning of segmentations for an object class
has been demonstrated by Winn and Jojic [16], and Arora et al. [17]. However,
it is unclear whether these methods could be extended to arbitrary meta-data.

4

Although our method is able to infer 3D cues for a previously unseen recog-
nized object instance, it is still limited to the pose in which it was trained.
In [18], we extended the ISM system to the multi-view case, and we are inves-
tigating the integration of that approach with the meta-data annotation pre-
sented in this paper. A number of other multi-view approaches have emerged
since then. For instance, Hoiem et al. [19] have augmented their LayoutCRF
with a 3D model, and demonstrate the recognition of cars from multiple view-
points. In principle, the inferred model pose might allow to infer 3D shape
information for recognized objects, but this is not explored in their paper [19].
Other methods, such as Kushal et al. [20] and Savarese and Fei-Fei [21] propose
a more qualitative approach towards multi-view object class recognition, by
modeling objects in different poses using loosely connected parts. This makes
it more difficult to extend those systems to produce a dense annotation of the
recognized object.

3 Object Class Detection with an Implicit Shape Model

In this section we briefly summarize the Implicit Shape Model (ISM) approach
proposed by Leibe et al. [1], which we use as the object class detection tech-
nique at the basis of our approach (see also Fig. 2).

Given a training set containing images of several instances of a certain category
(e.g. side views of cars) as well as their segmentations, the ISM approach builds
a model that generalizes over intra-class variability and scale. The modeling
stage constructs a codebook of local appearances, i.e. of local structures that
occur repeatedly across the training images. Codebook entries are obtained
by clustering image features sampled at interest point locations. Agglomera-
tive clustering is used, and the number of codewords follows automatically by
setting a threshold on the maximal distance between clusters [1]. Instead of
searching for correspondences between a novel test image and model views,
the ISM approach maps sampled image features onto this codebook represen-
tation. We refer to all features in every training image that are mapped to
a single codebook entry as occurrences of that entry. The spatial intra-class
variability is captured by modeling spatial occurrence distributions for each
codebook entry. Those distributions are estimated by recording all locations
of codebook entry occurrences, relative to the object centers (which are given
as training annotation). Together with each occurrence, the approach stores a
local segmentation mask, which is later used to infer top-down segmentations.

5

Segmentation

Refined Hypothesis

(optional) Hypothesis

Backprojected Backprojection

of Maximum

(continuous)

Voting Space

Voting

Probabilistic

Entries

Matched Codebook
Interest Points

Original Image

Fig. 2. The recognition procedure of the ISM system.

3.1 ISM Recognition.

The ISM recognition procedure is formulated as a probabilistic extension of
the Hough transform [1]. Let e be an image patch observed at location ℓ.
The probability that e matches to codebook entry ci can be expressed as
p(ci|e). Patches and codebook entries are represented by feature descriptors.
In our implementation, two descriptors match if their distance or similarity
(Euclidean or correlation, depending on the descriptor type), respectively, is
below or exceeds a fixed threshold. Each matched codebook entry ci casts votes
for instances of the object category on at different locations and scales λ =
(λx, λy, λs) according to its spatial occurrence distribution P (on,λ|ci, ℓ). The
votes are weighted by P (on,λ|ci, ℓ)p(ci|e), and the total contribution of a patch
to an object hypothesis (on,λ) is expressed by the following marginalization:

p(on,λ|e, ℓ) =
∑

i

P (on,λ|ci, ℓ)p(ci|e) (1)

where the summation is over all entries ci in the codebook. The votes are
collected in a continuous 3D voting space (translation and scale). Maxima are
found using Mean Shift Mode Estimation with a kernel with scale-adaptive
bandwidth and a uniform profile [22,1]. Each local maximum in this voting
space yields a hypothesis that an object instance appears in the image at a
certain location and scale.

3.2 Top-Down Segmentation.

After the voting stage, the ISM approach computes a probabilistic top-down
segmentation for each hypothesis, in order to determine its spatial support
in the image. This is achieved by backprojecting to the image the votes con-
tributing to the hypothesis (i.e. the votes that fall inside the mean-shift kernel
at the hypothesized location and scale). The stored local segmentation masks
are used to infer the probability that each pixel p is inside the figure or ground

6

area, given the hypothesis at location λ [1]. More precisely, the figure prob-
ability for p is only affected by codebook entries ci that match to a patch e
containing p, and only by their occurrences that contribute to the hypothesis
at location λ. The probability is calculated as a weighted average over the
corresponding pixels in these occurrences’ segmentation masks. The weights
correspond to the contribution of each occurrence to the hypothesis:

p
(

p ∈ figure|on,λ
)

=
1

C1

∑

e:p∈e

∑

i

p
(

p ∈ figure|e, ci, on,λ
)

p(e, ci|on,λ)

=
1

C1

∑

e:p∈e

∑

i

p
(

p ∈ figure|ci, on,λ
)

p(on,λ|ci)p(ci|e)p(e)
p(on,λ)

(2)

The priors p(e) and p(on,λ) are assumed to be uniformly distributed [1]. C1 is
a normalization term to make the equation express a true probability. The ex-
act value of this term is unimportant because the outcome of eq. 2 is used in a
likelihood ratio [1]. We underline here that a separate local segmentation mask
is kept for every occurrence of each codebook entry. Different occurrences of
the same codebook entry in a test image will thus contribute different local
segmentations, based on their relative location with respect to the hypothe-
sized object center.

In early versions of their work [23], Leibe and Schiele included an optional
processing step, which refines the hypothesis by a guided search for additional
matches (Fig. 2). This improves the quality of the segmentations, but at a
high computational cost. Uniform sampling was used in [23], which became
untractable once scale-invariance was later introduced into the system. In-
stead, in this paper we propose a more efficient refinement algorithm (section
4.3).

3.3 MDL Verification.

In a last processing stage of the ISM system, the computed segmentations are
exploited to refine the object detection scores, by taking only figure pixels into
account. Moreover, this last stage also disambiguates overlapping hypotheses.
This is done by a hypothesis verification stage based on Minimum Description
Length (MDL), which searches for the combination of hypotheses that together
best explain the image. This step prevents the same local image structure to
be assigned to multiple detections (e.g. a wheel-like image patch cannot belong
to multiple cars). For details, we again refer to [1].

7

Fig. 3. Transferring (discrete) meta-data. Left: two training images and a test image.
Right: the annotations for the training images, and the partial output annotation.
The corner of the license plate matches with a codebook entry which has occur-
rences on similar locations in the training images. The annotation patches for those
locations are combined and instantiated in the output annotation.

4 Transferring Meta-data

The power of the ISM approach lies in its ability to recognize novel object in-
stances as approximate jigsaw puzzles built out of pieces from different training
instances. In this paper, we follow the same spirit to achieve the new func-
tionality of transferring meta-data to new test images.

Example meta-data is provided as annotations to the training images. Notice
how segmentation masks can be considered as a special case of meta-data.
Hence, we transfer meta-data with a mechanism inspired by that used above
to segment objects in test images. The training meta-data annotations are
attached to the occurrences of codebook entries, and are transferred to a
test image along with each matched feature that contributed to a hypothesis
(Fig. 3). This strategy allows us to generate novel annotations tailored to the
new test image, while explicitly accommodating for the intra-class variability.

Unlike segmentations, which are always binary, meta-data annotations can be
either binary (e.g. for delineating a particular object part or material type),
discrete multi-valued (e.g. for identifying all object parts), real-valued (e.g.
depth values), or even vector-valued (e.g. surface orientations). We first explain
how to transfer discrete meta-data (Section 4.1), and then extend the method
to the real- and vector-valued cases (Section 4.2).

4.1 Transferring Discrete Meta-data

In case of discrete meta-data, the goal is to assign to each pixel p of the de-
tected object a label a ∈ {aj}j=1:N . We first compute the probability p(label(p) =

8

aj) for each label aj separately. This is achieved by extending eq. (2) for
p(figure(p)) to the more general case of discrete meta-data:

p
(

label(p) = aj|on,λ
)

=

1

C2

∑

p∈N(e)

∑

i

p
(

label(p) = aj|ci, on,λ
)

p
(

â(p) = ae(p)|e
)

p(e, ci|on,λ) (3)

The components of this equation will be explained in detail next. C2 is again
a normalization term. The first and last factors inside the summation are
generalizations of their counterparts in eq. (2). They represent the annotations
stored in the codebook and the voting procedure, respectively. One extension
consists in transferring annotations also from image patches near the pixel p,
and not only from those containing it. With the original version, it is often
difficult to obtain full coverage of the object, especially when the number of
training images is limited. By extending the neighborhood of the patches,
this problem is reduced. This is an important feature, because producing the
training annotations can be labor-intensive (e.g. for the depth estimates of the
cars in Section 5.1). Our notion of proximity is defined relative to the size of
the image patch, and parameterized by a scale-factor sN , which is 3 in all our
experiments. More precisely, let an image patch e be defined by its location
ℓ = (ℓx, ℓy, ℓs) obtained from the interest point detector (with ℓs the scale).
The neighborhood N(e) of e is defined as:

N(e) = {p|p ∈ (ℓx, ℓy, sN · ℓs)} (4)

A potential disadvantage of the above procedure is that for p = (px, py) outside
the actual image patch, the transferred annotation is less reliable. Indeed, the
pixel may lie on an occluded image area, or small misalignment errors may
get magnified. Moreover, some differences between the object instances shown
in the training and test images that were not noticeable at the local scale can
now affect the results. To compensate for this, we include the second factor in
eq. (3), which indicates how probable it is that the transferred annotation ae(p)
still corresponds to the ‘true’ annotation â(p). This probability is modeled by
a Gaussian, decaying smoothly with the distance from the center of the patch
e, and with variance related to the scale of e and the scale λs of the hypothesis
by a factor sG (1.40 in our experiments):

p
(

â(p) = ae(p) | e
)

=
1

σ
√

2π
exp

(

−(dx
2 + dy

2)/(2σ2)
)

with σ = sG · ℓs · λs

(dx, dy) = (px − ℓx, py − ℓy) (5)

9

Once we have computed the probabilities p(label(p) = aj) for all possible
labels {aj}j=1:N , we come to the actual assignment: we select the most likely
label for each pixel. Note how for some applications, it might be better to keep
the whole probability distribution {p(label(p) = aj)}j=1:N rather than a hard
assignment, e.g. when feeding back the information as prior probabilities to
low-level image processing.

An interesting possible extension is to enforce spatial continuity between labels
of neighboring pixels, e.g. by relaxation or by representing the image pixels
as a Markov Random Field. In our experiments (Section 5), we achieved good
results already without enforcing spatial continuity.

The practical implementation of this algorithm requires rescaling the an-
notation patches. In the original ISM system, bilinear interpolation is used
for rescaling operations, which is justified because segmentation data can be
treated as probability values. However, interpolating over discrete labels such
as ‘windshield’ or ‘bumper’ does not make sense. Therefore, rescaling must be
carried out without interpolation.

4.2 Transferring Real- or Vector-valued Meta-data

In many cases, the meta-data is not discrete, but real-valued (e.g. 3D depth)
or vector-valued (e.g. surface orientation). We will first explain how we obtain
a real-valued annotation from quantized training data, and then how fully
continuous meta-data is processed.

4.2.1 Quantized Meta-data

If the available meta-data is quantized, we can use the discrete system as in
the previous section, but still obtain a continuous estimate for the output
by means of interpolation. The quantized values are first treated as a fixed
set of ‘value labels’ (e.g. ‘depth 1’, ‘depth 2’, etc.). Then we proceed in a way
analogous to eq. (3) to infer for each pixel a probability for each discrete value.
In the second step, we select for each pixel the discrete value label with the
highest probability, as before. Next, we refine the estimated value by fitting
a parabola (a (D + 1)-dimensional paraboloid in the case of vector-valued
meta-data) to the probability scores for the maximum value label and the two
immediate neighboring value labels. We then select the value corresponding
to the maximum of the parabola. This is a similar method as used in interest
point detectors (e.g. [24,25]) to determine continuous scale coordinates and
orientations from discrete values. Thanks to this interpolation procedure, we
obtain real-valued output even though the input meta-data is quantized. The
advantage of only considering the strongest peak and its immediate neighbors

10

1D Meta-data

Votes per pixel

d

w

3D Meta-data

...

...

Initialization Mean-Shift iteration Convergence

1D

3D

Fig. 4. Mean-Shift mode estimation for continuous and vector-valued meta-data.
The top left shows a 3× 3 pixel fragment from an image, with 1D vote distributions
for each pixel. The top right shows another possible distribution where each vote is
a 3D normal vector (the size of the circles indicates the vote weights). The middle
and bottom row show the Mean-Shift mode estimation procedure for both types of
data. In the rightmost figures, the line width of the windows corresponds to their
scores and the black dot is the final value.

is that the influence of outlier votes is reduced (e.g. votes for discrete values
far from the peak have no impact).

4.2.2 Continuous and Vector-valued Meta-data

Processing fully real- or vector-valued meta-data requires a different approach.
Instead of building probability maps for discrete labels, we store for each pixel
all values that have been voted for, together with their vote weights. We again
use Eq. 5 to decrease the influence of votes with increasing distance from
their patch location. By storing all votes for each pixel we obtain a sampling
of the probability distribution over meta-data values. There are several ways
to derive a single estimate from this distribution. In a similar vein as in the
discrete system, we could take the value with the highest weight (argmax),
but this has proven in experiments to give unreliable results, because it is very
sensitive to outlier votes. A better method is to take the average, but this can
still be offset by outliers. A third and more robust method is to estimate the
mode of the sampled distribution.

11

We use a Mean Shift procedure [22] with a fixed window radius to estimate the
mode for each pixel. This method works for 1-dimensional as well as vector-
valued data. The mode estimation procedure uses a set of candidate windows,
which are iteratively shifted towards regions of higher density until conver-
gence occurs. Because the number of votes covering each pixel is in the order
of one hundred, there is no need to initialize the windows through random
sampling. Instead, we cover the entire distribution with candidate windows
by considering the location of each vote as a candidate window, and removing
all overlapping windows. Two windows overlap if their distance is less than
the window radius. Depending on the type of data, distance can be defined
as Euclidean distance, or as the angle between vectors. Next, we iterate over
all windows by replacing each window’s position by the weighted mean of all
votes within its radius, until convergence occurs. The score of a window is the
sum of the weights of all its votes. The coordinates of the window with the
highest score yield the position â of the mode. The estimate for the final value
for p can be formulated as:

â(p) = argmax
a

∑

ai|d(a,ai(p))<θ

w
(

ai(p)
)

(6)

The scalar or vector value ai(p) expresses the i-th vote for the value of pixel
p. There are as many votes as there are patches in the image that contribute
to the pixel p. Their weights w

(

ai(p)
)

correspond to the weights of the ob-
ject center votes in the Hough space cast by those patches, scaled by Eq. 5.
The function d(x, y) is a distance measure between meta-data values (e.g.
Euclidean distance or angle) and θ is the mean-shift window radius.

In case there are multiple modes with the same score, we take the average
position (this occurs rarely in our experiments). The label ‘background’ is
assigned if the score of the window around â is smaller than the sum of the
weights of background votes.

Figure 4 illustrates the mode estimation procedure for both 1-dimensional
meta-data (e.g. depth values) and 3-dimensional normal vectors. In the lat-
ter case, the windows are circles on a unit sphere, and the distance measure
between the votes and windows is the angle between their vectors. When up-
dating the window positions, care must be taken to keep the resulting vectors
normalized. When the meta-data consists of vectors that need to be compared
using Euclidean distance (e.g. 3D points), the windows are (hyper)spheres of
the same dimensionality as the vectors.

12

Voting space

Backprojection Matching points

Annotation

Refined annotation

Interest points

Fig. 5. Refining a hypothesis. An image with poor contrast (top left) produces in-
sufficient interest points to cover the whole object (top right). By backprojecting the
occurrence locations from the detected peak in the Hough space (bottom left), addi-
tional points can be found (bottom center), and a more complete annotation can be
constructed (bottom right).

4.3 Refining Hypotheses

When large areas of the object are insufficiently covered by interest points,
no meta-data can be assigned to them. Using a large value for sN will only
partially solve this problem, because there is a limit as to how far information
from neighboring points can be reliably extrapolated. A better solution is to
actively search for additional codebook matches in these areas. The refinement
procedure in early, fixed-scale versions of the ISM system [23] achieved this by
means of uniform sampling. A dense 2D grid of candidate points was generated
around the hypothesis, which is intractable in the scale-invariant (3D) case.
Therefore, we have developed a more efficient refinement algorithm which only
searches for matches in promising locations.

For each hypothesis, new candidate points are generated by backprojecting all
occurrences in the codebook, excluding points nearby existing interest points.
We define two interest points to be nearby, if there is more than 85% mu-
tual overlap between the neighborhoods over which their feature descriptors
are computed. When the feature descriptor for a new point matches with
the codebook cluster(s) that backprojected it, an additional hypothesis vote
is cast. The confidence for this new vote is reduced by a penalty factor to
reflect the fact that it was not generated by an actual interest point. In all
our experiments, we use a penalty factor of 0.5. The additional votes enable
the meta-data transfer to cover those areas that were initially missed by the
interest point detector. This procedure is illustrated in Fig. 5.

13

This refinement step can either be performed on the final hypotheses that
result from the MDL verification, or on all hypotheses that result from the
initial voting. In the latter case, it will improve MDL verification by enabling
it to obtain better figure area estimates of each hypothesis [1]. Therefore, we
perform refinement on the initial hypotheses in all our experiments.

5 Experimental evaluation

We evaluate our approach on two object classes: cars and wheelchairs. For
cars, we recover three types of annotations. The first is a 3D depth map, in-
dicating for each pixel the distance from the camera (a real-valued labeling
problem). The second is an orientation map, representing the surface normal
for each pixel. This is a vector-valued labeling problem. We stress that both
these results are achieved from a single image of a previously unseen car. In
the third experiment, we aim at decomposing the car in its most important
parts (wheels, windshield, etc.), which is a discrete labeling problem. We per-
form a similar part decomposition experiment on the wheelchairs. We first
perform a series of experiments on controlled images to assess the annotation
quality only. Then we show results on challenging images which demonstrate
the recognition ability of our system.

5.1 Inferring 3D Shape

In our first experiment, we infer 3D information, consisting of a depth map
and surface orientations, as meta-data for the object class ‘car’. A possible
application is an automated car wash. Even though such systems mostly have
sensors to measure distances to the car, they are only used locally while the
machine is already running. It could be useful to optimize the washing process
beforehand, based on the car’s global shape (both depth and orientations)
inferred by our system.

Our dataset is a subset of that used in [5]. It was obtained from the LabelMe
website [26], by extracting images labeled as ‘car’ and sorting them according
to their pose. For our experiments, we only use the ‘az300deg’ pose, which
is a semi-profile view. In this pose parts from both the front (windscreen,
headlights, license plate) and side (wheels, windows) are visible. Moreover,
this is the least planar view, resulting in more interesting depth/orientation
maps compared to purely frontal or side views. Note that while each ISM
detector is only trained for a single viewpoint, it can be extended to handle
multiple viewpoints [18]. The dataset contains a total of 139 images. We ran-
domly picked 79 for training, and 60 for testing. We train an ISM system using

14

Fig. 6. Obtaining depth and orientation maps for the car training images. Left shows
the original image, middle the image with the best matching 3D model superimposed.
At the right, the extracted depth map is shown for the top image, and the orientation
map for the bottom image.

the Hessian-Laplace interest point detector [27] and Shape Context descrip-
tors [28], because this combination has been shown to perform best in [29].
The resulting codebook has 1576 entries, with a total of 84148 occurrences.

To obtain training and ground-truth data for both the depth and orientation
maps, we manually align a 3D model on top of each training image. The most
suitable 3D model for each image is selected from a freely available collection 2

(Figure 6). Depth is extracted from the OpenGL Z-buffer. In general, any
3D scanner or active lighting setup could be used to automatically obtain
3D shape annotations during training. We normalize the depths based on
the dimensions of the 3D models by assuming that the width of a car is
approximately constant. Orientations are encoded by mapping each surface
normal vector n = (x, y, z) to a 24 bit color c = (r, g, b) (e.g. with a fragment
shader):

c = 255 ·
(

n + (0.5, 0.5, 0.5)
)

(7)

We test the system on the 60 test images, using the real-valued method from
Section 4.2.2. For the Mean Shift mode estimation, we use a window radius θ
of 24% of the total depth range, and 60 degrees for the orientations. The goal
of this first experiment is to assess the quality of the annotations only, not the
recognition performance, which will be demonstrated in Section 5.2. Because
each image only contains one object, we therefore select the detection with
highest score for meta-data transfer. Some of the resulting annotations can be
seen in the third and fifth columns of figure 7.

2 http://dmi.chez-alice.fr/models1.html

15

Test image Ground truth Result Ground truth Result

Fig. 7. Results for the car depth map and surface orientation experiments. From
left to right: test image, ground-truth and output of our system for the depth map
experiment, and ground-truth and output for the surface orientation experiment. The
R,G,B colors represent the components of the surface normal according to Eq. 7.
White areas are unlabeled and can be considered background.

16

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of pixels below depth error threshold

Depth error threshold (depth range [0,1])
F

ra
ct

io
n

 o
f

p
ix

el
s

Fig. 8. The fraction of pixels that are both labeled as ‘figure’ in ground-truth and
output, that are below the absolute depth error threshold on the horizontal axis. The
circle indicates the average depth error.

0 50 100 150 200 250
0

50

100

150

200

Depth map slice at y=80

x

In
v
er

se
 d

ep
th

Ground Truth

Output

0 50 100 150 200 250
0

50

100

150

200

250

Depth map slice at y=150

x

In
v
er

se
 d

ep
th

0 50 100 150 200 250
0

50

100

150

200

Depth map slice at y=80

x

In
v
er

se
 d

ep
th

0 50 100 150 200 250
0

50

100

150

200

250

Depth map slice at y=150

x

In
v
er

se
 d

ep
th

Fig. 9. Horizontal slices through the ground-truth and output depth maps of the fifth
car (top) and sixth car (bottom) in Fig. 7.

To evaluate this experiment quantitatively, we use the ground-truth anno-
tations to calculate the following error measures. We define leakage as the
percentage of background pixels in the ground-truth annotation that were la-
beled as non-background by the system. The leakage for both the depth map
and orientation experiments, averaged over all test images, is 5.7%. We also
define a coverage measure, as the percentage of non-background pixels in the
ground-truth images labeled non-background by the system. The coverage ob-
tained by our algorithm is 94.6%. This means our method is able to reliably
segment the car from the background.

All training and ground-truth depth maps are scaled to the interval [0, 1] such

17

Fig. 10. Some views of a texture mapped 3D model, generated from the depth map
of the recognized car in the top left corner.

that their depth range is 3.5 times the width of the car. The average absolute
value of the depth error is 3.94% of this total range. This is only measured
inside areas which are labeled non-background in both the ground-truth and
result images, because the depth is undefined for the background. Fig. 8 shows
how the fraction of this area varies in function of increasing absolute error
threshold. It is possible to estimate the depth error in real-world units, by
scaling the normalized depth maps by a factor based on the average width
of a real car, which we found to be approximately 1.80 m. A plausible real-
world depth error can be calculated by multiplying the relative error measure
by 3.5 · 1.80m, which yields 24.8 cm for the mean absolute error. To better
visualize how the output compares to the ground-truth, Fig. 9 shows a few
horizontal slices through two depth maps of Fig. 7. Fig. 10 shows some views
of a 3D model created by mapping the image of the recognized car onto the
depth map produced by our system.

To compare results between fully continuous meta-data and using quantized
meta-data, we repeated the depth map experiment with the depth maps quan-
tized to 20 levels. The interpolating method from Section 4.2.1 was used to
obtain a continuous result. For this experiment, the leakage is 4.8%, the cov-
erage 94.6% and the depth error estimate 26.7 cm. This shows that although
the discrete method performs already well, the continuous method does better,
and should be used whenever possible.

For the surface orientation experiment, we can calculate the average angular
error over the area that is labeled foreground in both the ground-truth and
test image. The average error over all test images is 23.3 degrees.

We examined the influence of the number of training images on annotation
performance, by repeating the depth map experiment with ISMs trained from
fewer images. We sorted the images according to the numbers of occurrences
they have in the 79-image ISM. Images with fewer occurrences are removed

18

0 10 20 30 40 50 60 70 80
75

80

85

90

95

100
Coverage vs. # training images

Training images

C
o

v
er

ag
e

(%
)

0 10 20 30 40 50 60 70 80
20

22

24

26

28

30
Depth error vs. # training images

Training images

D
ep

th
 e

rr
o

r
(c

m
)

Fig. 11. Evolution of coverage and depth error within non-background areas, in func-
tion of the number of training images for the car depth map experiment.

first. We train ISMs in an identical way as described above, using less and
less training images, from 70 down to 17. Figure 11 shows how the coverage
and depth error within non-background areas evolve with varying numbers
of training images. Performance remains comparable to the 79-image ISM,
even when training from only 50 images. Below this point, both coverage and
depth error start getting worse slowly. At 26 images, the position and scale
of some detections starts deviating, and at 17 images, some cars cannot be
recognized at all. This shows that the performance of the system degrades
gracefully with the number of training images, and that it performs well even
with considerably less than the original 79 images.

5.2 Object Decomposition

In further experiments, the goal is to delineate certain areas of interest on
the objects, which is a discrete annotation task. For our car wash scenario, a
decomposition into parts would allow different washing methods to be applied
to different car parts. For the class of wheelchairs, a possible application is a
service robot. This robot’s task could be to retrieve a wheelchair, for instance
in a hospital or to help a disabled person at home. In order to retrieve the
wheelchair, the robot must be able to both detect it and determine where to
grab it. Our method will help the robot to get close to the grabbing position,
after which a detailed analysis of scene geometry in a small region can establish
the grasp [30].

We annotated our car dataset with ground-truth part segmentations for body,
windshield/windows, wheels, bumper, lights and license plate. Aside from the
different meta-data, the training phase is identical to the one in Section 5.1.
The testing phase is performed with the method presented in Section 4.1.
Results are shown in Fig. 12. The leakage for this experiment is 6.83% and
coverage is 95.2%.

We report a quantitative evaluation for this experiment in the form of a con-

19

Body Windows Wheels Bumper Lights License Backgnd

Test image Ground truth Result

Fig. 12. Results for the car parts annotation experiment. From left to right: test
image, ground-truth, and output of our system. White areas are unlabeled and can
be considered background.

fusion matrix. For each test image, we count how many pixels of each part aj

in the ground-truth image are labeled by our system as each of the possible
parts (body, windows, etc.), or remain unlabeled (which can be considered
background in most cases). This score is normalized by the total number of
pixels of that label in the ground-truth âj. Table 1 shows the confusion table
entries averaged over all test images. The diagonal elements show how well
each part was recovered in the test images. Labeling performance is good,
except for the headlights. This is due to the fact that they are the smallest
parts in most of the images. Small parts have a higher risk of being confused

20

bkgnd body bumper headlt window wheels license unlabeled

bkgnd 23.56 2.49 1.03 0.14 1.25 1.88 0.04 69.61

body 4.47 72.15 4.64 1.81 8.78 1.86 0.24 6.05

bumper 7.20 4.54 73.76 1.57 0.00 7.85 2.43 2.64

headlt 1.51 36.90 23.54 34.75 0.01 0.65 0.23 2.41

window 3.15 13.55 0.00 0.00 80.47 0.00 0.00 2.82

wheels 11.38 6.85 8.51 0.00 0.00 63.59 0.01 9.65

license 2.57 1.07 39.07 0.00 0.00 1.04 56.25 0.00

Table 1
Confusion matrix for the car parts annotation experiment. The rows represent the
annotation parts in the ground-truth maps, the columns the output of our system.
The last column shows how much of each class was left unlabeled. For most evalua-
tions, those areas can be considered ‘background’.

with the larger parts (body, bumper) in their neighborhood.

For a second part decomposition experiment, we collected 141 images of wheel-
chairs from Google Image Search. We again chose semi-profile views, because
they are the most complex and most widely available views. All images are
annotated with ground-truth part segmentations for grab area, wheels, arm-
rests, seat, and frame. In our assistive robot scenario, the grab area is the
most important one. We included the rear right wheels in the ‘frame’ label,
for two reasons. First, that wheel is often heavily or completely occluded by
the frame itself. Second, this illustrates how our system can differentiate be-
tween similar-looking structures, based on their position on the object. A few
representative images and their ground-truth annotations can be seen in the
left and middle columns of Fig. 13.

The images are randomly split into a training and test set. We train an ISM
system using 80 images in a similar way as for the car experiments. The
codebook has 4289 entries, with a total of 133138 occurrences. Next, we test
the system on the remaining 61 images, using the method from Section 4.1.
Some of the resulting annotations can be seen in the third column of Fig. 13.
The grab area is accurately localized.

With a leakage of 3.75%, and a coverage 95.1%, the segmentation performance
is again very good. The confusion table is shown in Table 2. Not considering
the armrests, the system performs well as it labels correctly between 67% and
77% of the pixels, with the highest score being for the part we are the most
interested in, i.e. the grab area. The lower performance for the armrests is
again due to the fact that they are the smallest parts in most of the images.

21

Grab area Wheels Armrests Seat Frame Background

Test image Ground truth Result

Fig. 13. Results for the annotation experiment on wheelchair images. From left to
right: test image, ground-truth, and output of our system. White areas are unlabeled
and can be considered background.

5.3 Combined recognition and annotation in cluttered images

To illustrate the ability to simultaneously detect objects in cluttered scenes
and infer meta-data annotation, we have performed the part decomposition
experiment on challenging real-world images for both the car and wheelchair
classes. Results for the cars are shown in Fig. 14.

22

bkgnd frame seat armrest wheels grab-area unlabeled

bkgnd 32.58 1.90 0.24 0.14 1.10 0.37 63.67

frame 15.29 66.68 6.47 0.46 6.90 0.10 4.10

seat 2.17 15.95 74.28 0.97 0.33 1.55 4.75

armrest 11.22 5.62 29.64 49.32 1.25 0.63 2.32

wheels 13.06 9.45 0.36 0.07 71.39 0.00 5.67

grab-area 6.48 1.28 9.77 0.11 0.00 76.75 5.62

Table 2
Confusion matrix for the wheelchair part annotation experiment (cfr. Table 2).

For the wheelchairs, we collected 34 images with considerable clutter and/or
occlusion. We used the same ISM system as in the annotation experiment,
to detect and annotate the chairs in these images. Some results are shown
in Fig. 15. We consider a detection to be correct when its bounding box has
at least 50% overlap with the ground-truth bounding box. Out of the 39
wheelchairs present in the images, 30 were detected, and there were 7 false
positives. This corresponds to a recall of 77% and a precision of 81%.

Processing time is in the order of 1 min for small images and 6 min for large
cluttered images on a Core 2 Quad PC. Memory usage is between 200 MB for
small images and 360 MB for large images. Little to no attempts at optimiza-
tion have been done yet, so there is a lot of potential for making the software
more efficient.

6 Conclusions

We have developed a method to transfer meta-data annotations from training
images to test images containing previously unseen objects, based on object
class recognition. Instead of using extra processing for the inference of meta-
data, this inference is deeply intertwined with the actual recognition process.
Low-level cues in an image can lead to the detection of an object, and the
detection of the object itself causes a better understanding of related low-level
cues, like depth, orientations or part labels. The resulting meta-data inferred
from the recognition can be used as input for other systems, e.g. as a prior for
a 3D reconstruction algorithm.

Future research includes closing the cognitive loop by using the output from
our system as input for another system. For instance, inferred depths, orien-
tations and/or part labels can be used to guide a robot’s actions, possibly
in combination with other systems. Another interesting extension would be a
method to improve the quality of the annotations by means of relaxation or
Markov Random Fields.

23

Fig. 14. Car detection and annotation results on real-world test images. Even though
the car in the car wash scene (bottom) is in a near-frontal pose, it was still correctly
detected and annotated by the system trained on semi-profile views.

Acknowledgment

The authors gratefully acknowledge support by IWT-Flanders, Fund for Sci-
entific Research Flanders and European Project CLASS (3E060206).

24

Fig. 15. Wheelchair detection and annotation results on challenging real-world test
images. All detections are correct except for the two topmost ones in the center left
image. Note how one wheelchair in the middle right image was missed because it is
not in the pose used for training.

25

References

[1] B. Leibe, A. Leonardis, B. Schiele, Robust object detection with interleaved
categorization and segmentation, International Journal of Computer Vision
77 (1-3) (2008) 259–289.

[2] K. Rockland, G. V. Hoesen, Direct temporal-occipital feedback connections to
striate cortex (V1) in the macaque monkey, in: Cereb. Cortex, Vol. 4, 1994, pp.
300–313.

[3] D. Mumford, Neuronal architectures for pattern-theoretic problems, Large-
Scale Neuronal Theories of the Brain (1994) 125–152.

[4] D. Hoiem, A. Efros, M. Hebert, Putting objects in perspective, CVPR (2006)
2137–2144.

[5] B. Leibe, N. Cornelis, K. Cornelis, L. Van Gool, Dynamic 3D scene analysis
from a moving vehicle, CVPR (2007) 1–8.

[6] I. Biederman, Recognition-by-components: A theory of human image
understanding, Psychological Review 94 (2) (1987) 115–147.

[7] R. Bergevin, M. D. Levine, Generic object recognition: Building and matching
coarse descriptions from line drawings, PAMI 15 (1) (1993) 19–36.

[8] D. Hoiem, A. A. Efros, M. Hebert, Geometric context from a single image,
ICCV (2005) 654–661.

[9] E. Sudderth, A. Torralba, W. Freeman, A. Willsky, Depth from familiar objects:
A hierarchical model for 3D scenes, CVPR 2 (2006) 2410–2417.

[10] A. Saxena, J. Schulte, A. Y. Ng, Learning depth from single monocular images,
NIPS 18 (2005) 1–8.

[11] F. Han, S.-C. Zhu, Bayesian reconstruction of 3D shapes and scenes from
a single image, Workshop Higher-Level Knowledge in 3D Modeling Motion
Analysis (2003) 12–20.

[12] T. Hassner, R. Basri, Example based 3D reconstruction from single 2d images,
in: Beyond Patches Workshop at IEEE CVPR06, 2006, p. 15.

[13] A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, D. Salesin, Image analogies,
SIGGRAPH Conference Proceedings (2001) 327–340.

[14] L. Cheng, S. V. N. Vishwanathan, X. Zhang, Consistent image analogies using
semi-supervised learning, CVPR (2008) 1–8.

[15] M. Kumar, P. Torr, A. Zisserman, OBJ CUT, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2005.

[16] J. Winn, N. Jojic, LOCUS: Learning object classes with unsupervised
segmentation, in: Proc. IEEE Intl. Conf. on Computer Vision (ICCV), Vol. 1,
2005, pp. 756–763.

26

[17] H. Arora, N. Loeff, D. A. Forsyth, Unsupervised segmentation of objects
using efficient learning, in: IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

[18] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, B. Schiele, L. Van Gool,
Towards multi-view object class detection, CVPR 2 (2006) 1589–1596.

[19] D. Hoiem, C. Rother, J. Winn, 3D LayoutCRF for multi-view object class
recognition and segmentation, CVPR (2007) 1–8.

[20] A. Kushal, C. Schmid, J. Ponce, Flexible object models for category-level 3d
object recognition, CVPR (2007) 1–8.

[21] S. Savarese, L. Fei-Fei, 3d generic object categorization, localization and pose
estimation, in: ICCV, 2007, pp. 1–8.

[22] Y. Cheng, Mean shift, mode seeking, and clustering, IEEE Trans. Pattern Anal.
Mach. Intell. (1995) 790–799.

[23] B. Leibe, B. Schiele, Interleaved object categorization and segmentation, BMVC
(2003) 759–768.

[24] D. G. Lowe, Distinctive image features from scale-invariant keypoints, IJCV
60 (2) (2004) 91–110.

[25] H. Bay, T. Tuytelaars, L. Van Gool, SURF: Speeded up robust features,
Proceedings ECCV, Springer LNCS 3951 (1) (2006) 404–417.

[26] B. Russell, A. Torralba, K. Murphy, W. Freeman, LabelMe: a database and
web-based tool for image annotation, MIT AI Lab Memo AIM-2005-025.

[27] K. Mikolajczyk, C. Schmid, Scale & affine invariant interest point detectors,
IJCV 60 (1) (2004) 63–86.

[28] S. Belongie, J. Malik, J. Puzicha, Shape context: A new descriptor for shape
matching and object recognition, in: NIPS, 2000, pp. 831–837.

[29] E. Seemann, B. Leibe, K. Mikolajczyk, B. Schiele, An evaluation of local shape-
based features for pedestrian detection, in: Proceedings of the 16th British
Machine Vision Conference, Oxford, UK, 2005, pp. 11–20.

[30] A. Saxena, J. Driemeyer, J. Kearns, A. Y. Ng, Robotic grasping of novel objects,
NIPS 19 (2006) 1209–1216.

27

