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Abstract—This paper proposes a pipeline for lying pose recog-
nition from single images, which is designed for health-care
robots to find fallen people. We firstly detect object bounding
boxes by a mixture of viewpoint-specific part based model
detectors and later estimate a detailed configuration of body
parts on the detected regions by a finer tree-structured model.
Moreover, we exploit the information provided by detection to
infer a reasonable limb prior for the pose estimation stage.
Additional robustness is achieved by integrating a viewpoint-
specific foreground segmentation into the detection and body pose
estimation stages. This step yields a refinement of detection scores
and a better color model to initialize pose estimation. We apply
our proposed approach to challenging data sets of fallen people
in different scenarios. Our quantitative and qualitative results
demonstrate that the part-based model significantly outperforms
a holistic model based on same feature type for lying pose
detection. Moreover, our system offers a reasonable estimation
for the body configuration of varying lying poses.

I. INTRODUCTION

Among the major concerns of elderly care, detection of a
fall bears immense importance. It can sometimes become a
matter of life and death for people living alone, the elderly
in particular. It has been reported by CDC [1] that in the US,
every year among the 65 years or older people, one in every
three experiences a fall. Each year there are cases of 300,000
hip fractures due to fall. More alarmingly, one in every five
people breaking their hip die within a year of the fracture. In
most of these cases, the damage is due to need of action for
calling help from the fallen person’s side which is not practical
in all the instances.

To address this issue, fall detection systems relying on
specialized sensors [24, 14, 11, 13] or with fixed cameras
[20, 23] have been proposed. However, they provide neither
necessary accuracy in detection nor sufficient protection to
privacy. Intelligent robots, usually perceived to be equipped
with a camera, can ameliorate these issues due to the relative
flexibility that they can offer in terms of positioning. In
addition, they are more acceptable to the user, since the hu-
manoid characteristics incorporated in robots allow a smoother
interaction with humans.

Considering the limited processing power of current heath-
care robots, the problem domain we explore is fall detection
in still images captured by robot mounted cameras. In this
context, a fall is addressed as a lying pose. In this paper,
we therefore propose a novel solution for detection of a
fall through lying posture recognition based on mobile robot
mounted camera images.
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Fig. 1. Visualization of our proposed pipeline for lying posture
recognition. Given an input image (a), we first detect fallen people
in different orientations using an extended Deformable Part-Based
Model (b). The detected person bounding box (in red) and part
locations (in blue) are then used to infer initial limb sizes and
locations (c), which are again refined in a Pictorial Structures
framework in order to estimate the person’s detailed body pose (d).

However, the challenges for lying pose estimation are huge.
Apart from the challenges in upright human detection and
pose estimation, lying pose recognition has a much larger
degree of foreshortening distortion in perspective than other
poses. This makes pose estimation extremely difficult. There
are mainly three issues: Firstly, lying poses suffer from the
perspective foreshortening effects, so that we lose important
cues for detection, e.g. the typical head-body omega shape
and horizontal body symmetry. Secondly self occlusion and
cluttered scenes are frequent cases in the fall detection context.
Last but not least, it is difficult to obtain good training data,
which ideally spans the variability of person appearances, body
poses, and background structures.

Our approach builds upon previous work for part-based
detection [7] and pose parsing [8], but adapts and extends
it in order to deal with the many challenges associated with
lying postures. Our three main contributions reported in this
paper are as follows. (1) We extend the detection algorithm
to multiple viewpoints and strong perspective foreshortening
effects. We explore how an upright person detector needs to be
adapted for lying postures under different viewing angles and



devise optimized training procedures for the learning phase of
the new detector from few training examples. (2) We propose
an algorithm to perform multi-viewpoint pose parsing based
on the part-based detection results. Our approach is inspired
by the upright upper-body parsing approach of Ferrari et al.
[8]. The unique property of our approach is that it is capable
of parsing a full-body model subject to viewpoint changes
and corresponding perspective foreshortening. (3) Since per-
spectively foreshortened limb sizes become a real problem in
the multi-viewpoint case, we propose a method to infer the
limb locations and sizes directly from the part-based detection
results. This step takes advantage of the Pictorial Structures
model available in the detector and naturally connects it to the
Pictorial Structures model used for pose inference. We show
that the resulting pose estimation performance is superior to
the performance of a baseline approach just based on location
and segmentation priors.

We experimentally demonstrate that our proposed approach
achieves good results for lying posture detection and pose
analysis in a variety of challenging settings, as they would
be observed by a mobile service robot.

The rest of this paper is organized as follows. Sec. II
describes an overview of related works. Sec. III presents the
detailed description of our proposed mechanism. We summa-
rize the results from our experiments and discuss observations
from them in Sec. IV. Finally, in Sec. V we conclude along
with presenting some ideas for future research.

II. RELATED WORKS

Many existing approaches attempt to provide the target
person with a wearable sensor, such as accelerometers [24] and
gyroscopes [14], or even a fusion of multiple sensors [11, 13].
Despite best efforts at stylish and comfortable design, creating
user acceptance for such wearable solutions is however still
an open issue.

Another stream of solutions is based on computer vision.
The use of wall or roof mounted cameras have been proposed
in the literature [20, 23, 10]. Miaou et al. [20] make use of
personal information and try to ensure 360 degree coverage by
using omnidirectional surveillance cameras. Williams & Han-
son [23] handle the issue of complete coverage by overlapping
multiple camera views. However, the use of fixed cameras
can be unreliable due to occlusions by furniture items and
limitations of the camera viewpoint. In addition, they can be
perceived as agents for direct intrusion into privacy.

In approaches based on background modeling [23, 10, 22],
decisions of fall detection mainly depend on blob analysis.
Williams & Hanson [23] simplify detection of fall as dis-
tinguishing non-upright human blobs through size and shape
analysis. However, similar planned motions, e.g. sitting down,
are easy to trigger false alarm in such approaches. Hazelhoff
[10] incorporates a head tracking module to enhance detection
performance, which is again sensitive to the scene occlusion.
We therefore propose to pursue a more detailed analysis by
performing full-body pose estimation.

To support the mobility of heath-care robots, our system
is designed to recognize lying poses in monocular images
without any knowledge about the background or the person’s
clothing. For this, we build upon recent advances in human
detection [3, 12, 7]. To date, however, state-of-the-art works on
human detection mainly focus on upright persons. Adapting
those approaches to lying poses is non-trivial due to the effects
of different body orientations and perspective foreshortening.
In Section III-B, we therefore propose an extension of the
Deformable Part Based Model by [7] that can recognize lying
persons in different orientations.

Several approaches have been proposed for estimating the
body pose of upright humans [6, 18, 8, 2, 4]. Ferrari et
al. [8] propose a coarse-to-fine pipeline that progressively
reduces the search space in order to achieve more reliable pose
estimation results. The first step is upper body detection, which
results in a primary interest region, followed by a foreground
segmentation step. This way, the later pose parsing steps
[18, 6] are guided to a region focusing on the detected human
and with most background removed. This leads to a much
faster and robust estimation, though occlusion is still not well
modeled. However, this approach heavily relies on expected
part locations for the head and upper body in order to initialize
the foreground segmentation. As those part locations can
significantly vary for lying persons in different orientations, it
is therefore not directly applicable here. Moreover, the greater
pose variability of lying postures, together with background
clutter, introduce additional challenges.

In this work, we therefore propose an extension of Ferrari et
al.’s pipeline that is targeted at the specific challenges of lying
postures. In particular, we propose an inference procedure
that takes advantage of the detected part locations from the
viewpoint-specific object detector in order to provide an initial-
ization for the limb locations and sizes, taking into account the
effects of perspective foreshortening (see Section III-D). As
our experiments show, this step significantly improves the pose
estimation results and our approach’s robustness to clutter.

III. APPROACH

A. Overview

We formulate the problem of fall detection as lying posture
recognition in still images. State-of-the-art pose estimation
approaches [6, 18, 8, 2, 4] provide a detailed representation of
human bodies, i.e., a limb tree, but are likely to suffer from
high computation complexity due to the huge searching space.
Inheriting the concept of [8], we progressively reduce the
searching space by adding two precedent stages, i.e., detection
and segmentation. More importantly, we take one step further
by exploiting information from detection and segmentation
stages. Through intensive experiment, we discover that De-
formable Part Based Model by [7] is a ’degraded’ version
of Pictorial Structure for pose parsing [8, 18]. Detections
reported by Deformable Part Based Model might imply true
limb locations with a much lower computation cost. The main
contribution of our approach lies in the way how we model
this connection, as shown in Section III-D.



What we propose is a coarse-to-fine pipeline to achieve a
more and more detailed representation for lying poses (see
Fig. 1). In the first stage, we perform lying pose detection on
the input image by searching for bounding box hypotheses
containing lying persons over image locations and scales.
Humans are described by a part-based star model [7] with
a root filter representing the rough outline shape and a set of
part filters capturing the important shape details. The detection
score is modeled as a sum of appearance confidences from
both root and parts, reduced by a deformation cost caused
by part displacement. A multiple-component mixture model
is trained to separate distinct viewing angles or principal body
orientations.

Within each bounding box, we extract a foreground mask
via GrabCut [19]. In the context of health care applications,
we can make the reasonable assumption that at most one
lying person is visible in the robot’s field of view. Based
on this assumption, we focus on the detailed pose analysis
of the foreground image resulting from one hypothesis with
the highest confidence. Here, the confidence combines factors
from both detection score and foreground probability.

In the final stage, we perform pose estimation based on
the detected person location and the estimated foreground
segmentation mask. For this, we adopt the pose parsing
framework proposed by [16, 8] and extend it to the multi-view
case. This framework represents the human body configuration
by a tree-shaped body model, which lends itself to an efficient
inference procedure [6].

The challenges of lying posture analysis necessitate several
important changes to this framework. In order to cope with the
effects of perspective foreshortening on the limb configuration,
we need to keep separate body models for the different
viewpoints. In addition, the larger pose variability of lying
postures raises the importance of starting pose inference from
a good initialization. A fixed limb location prior, as used
in previous papers [16, 8] is no longer sufficient here. We
therefore propose to infer the initial limb positions and sizes
from the detected part locations of the object detector. As
our results show, this step significantly improves the pose
estimation results. This initialization also generalizes the pose
estimation framework [8] by reducing the number of hard
coded parameters.

B. Lying Posture Detection

The human detector proposed by [7] is used for lying pose
cases in our system. The basic concept is to represent an object
as a star model, which is a collection of rigid patches, named
parts, whose location is defined independently with respect to
a central root part. Looser part placement constraints tolerate
local translation and deformation of parts to a certain extent,
which offers a benefit when dealing with articulated objects.
On the other hand, spatial and visual cues are well fused in a
statistical sense.

A model θ with N parts is defined as

θ = (f0, f1 . . . , fN , v1, . . . , vN , d1, . . . , dN )

(a) (b)

(c) (d) (e)

Fig. 2. Visualization of the seven-parts deformable mixture model for
some of the viewpoint classes of lying poses used in our approach.
From left to right (a), (b) or from top to bottom (c), (d), (e): the root
filter, part filters and corresponding deformation functions.

Besides the root filter f0, each part i holds a 3-tuple of
parameters, i.e. a linear HoG weight filter fi, an ideal anchor
position with respect to the root location vi, and deformation
function coefficients di.

Given one image I , a HoG feature pyramid P is ex-
tracted. All possible configurations of object hypotheses L =
{l0, . . . , lN} are evaluated, where li is a 3-dimensional vector
in (x, y, scale) space. Linear filters {f0, . . . , fN} play a role
as shape templates to encode part appearance information.
The observation likelihood P (I|L, θ) is proportional to the
product of the response of all part filters in their corresponding
locations. The geometric relation between parts and the root
P (L|I, θ) is incorporated into the score function as a quadratic
cost.

For the detection task, the root location score is formu-
lated as a maximization of object hypothesis scores over
part displacements. Maximization is performed for each part
independently:

Sθ(I, l0)= max
{l1,..,lN}

f0∗P|l0 +

N∑
i=1

fi∗P|li −di


dx
dy
dx2

dy2


 , (1)

where (dx, dy)> is the location of li with respect to its ideal
position, i.e. 2l0+vi. Note that part locations and appearances
are represented at twice the resolution of the root part.

Multi-Viewpoint Detection. In the context of our application,
we can assume that a service robot’s camera will be mounted
at a fixed height and tilt angle. We therefore need to design
the detector such that it can recognize fallen people from
this perspective. The main difficulty here is the variability
of possible body orientations on the floor, which leads to
significantly changed person appearance through perspective
distortion. This is in contrast to standard human detection
tasks, which can rely on the presence of upright body shapes
[3, 12, 7].

In order to cope with this difficulty, we propose to use a
mixture of 8 distinct detector models, each dealing with one
body orientation class covering a 45◦ interval. Our mixture
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Fig. 3. Synthetic training data creation by background substitution.
(a) the original image with annotated bounding box. Based on this
box and our object characteristics, the initial mask (b) contains
regions marked as foreground (green), background (red) or unknown
(no label). (c) the resulting foreground image after two iterations of
segmentation assisted by user interaction. (d) a realistic synthetic
sample is created by superimposing this foreground onto other
floor textures. An optimal substitution center is given by fitting the
foreground mask to the new ground plane.

model with C components is defined as Θ = (θ1, . . . , θC).
We train each individual model component as a separate
latent SVM, following the framework of [7], and merge all
components into the final mixture. Five components are trained
individually to represent the body orientations from degree 0
to 180 (with respect to the y axis of the camera view plane).
The other three components {225◦, 270◦, 315◦} are obtained
by mirroring components {135◦, 90◦, 45◦} along the y axis.
Each component consists of three elements: the root filter,
the placement of the part filters within the root box, and a
quadratic function as the deformation penalty. See Fig. 2 for
the resulting detector models.

All components perform the detection independently, i.e.,
the detector fires if any component reports a score higher than
its threshold at this root location. Thus, the decision function
of a mixture model with C components (Eq. 1) is extended as

H = {h = (L, c, Sθc(I, l0)) |Sθc(I, l0) ≥ Tc}, (2)

where H is a list of detection hypotheses h in image I .
This is again a deviation from the approach of [7], which

may also include several mixture components to represent
different object aspects (e.g. upper body vs. full body). As
those aspects may share visual characteristics and multiple
aspect components may thus be active for the same object,
[7] merges the component responses into a single detector
response. In contrast, our model uses the components to
represent different body orientation classes or viewing angles,
which are unlikely to share visual characteristics. We therefore
do not perform such a component merging step.

Training Set Enrichment. In order to boost recognition
performance, we employ similar schemes as the ones proposed
in [21] to create synthetic variants of the original training
dataset. Together, this artificial variation enriches our training
set by a factor of 120. This includes

Background Replacement. This is a key mechanism in
training set enrichment. A foreground mask is obtained from
an interactive segmentation tool using Grabcut [19]. Based on
this, the exact body shape is extracted and superimposed onto
other backgrounds. Besides this, we find an optimal position
as well as a proper scale according to the ground plane of

(a) (b) (c) (d)

Fig. 4. Reliable foreground segmentation guided by detection. Given
the bounding box l0 from detection (a), the initial mask is defined ac-
cording to the body orientation class c (c). Accumulating foreground
masks from full set of hypotheses gives an overall foreground map Af

(b) . The darker red color indicates a higher foreground probability
of this pixel. Combining (b) and (c), one additional run of Grabcut
finalizes segmentation, resulting in a much reduced region of interest
(d).

new background images to make generated synthetic samples
more realistic (See one sample in Fig. 3).

Training Sample Shearing. Shearing samples by a small
angle, chosen as 3◦ in our experiments, is a traditional means
to augment training sets. To obtain more realistic instances,
we perform shearing along the y axis.

Mirror Orientation Association. We associate the horizon-
tally mirrored model to the corresponding body orientation
bins. This way, each sample also serves the bin corresponding
to its horizontally flipped version.

C. Foreground Segmentation

Starting with an initial label mask, Grabcut [19] efficiently
extracts a region of interest from the original image. In this
paper, we perform an unsupervised version of Grabcut [19]
to segment potential foreground regions (See one sample in
Fig. 4). Given the detected component index c in hypothesis
h, an initial mask is defined according to the corresponding
body orientation class. Alternatively, we consider detected part
boxes as potential foreground as well. Grabcut performs hard
segmentation on a proportionally enlarged version of l0, which
results in a binary mask F(h).

Foreground segmentation not only reduces the search space
for later pose parsing, but also verifies detection hypotheses, in
a similar manner as [17]. Recall that a detection hypothesis h
has a representation of the best configuration L, the component
index c and its detection score Sθc(I, l0) (Eq. 2). Different
from [8], segmentation is performed on the whole set of
hypotheses H individually, instead of only on the best one. Our
rationale is that the definition of initial label masks implies the
region color coherence. It is less likely that false alarms will
have similar foreground/background separation, though they
preserve edge characteristics close to our object class.

The resulting foreground masks are accumulated by weight-
ing their detection scores. Detections from the same image
I are validated on the basis of this accumulated foreground
map, i.e., those bounding boxes having a significant overlap
with this accumulated map Af(I,H) are more likely to be true
detections. This motivates us to re-rank detections by a weight
ws(h), as defined in Eq. 3

ws(h) =
Af(I,H) · F(h)∑

p (Af(I,H))
(3)
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Fig. 5. (a) The first two parts detected. (b) Each limb is predicted
by the full set of detected parts via a linear mapping function.
Accordingly, the edge model is adjusted to cope with perspective
foreshortening effects, e.g. head (blue) and torso (red). (d) Adaptive
color model initialization. Given the foreground map from segmen-
tation (c) and potential torso and head boxes (b), two region masks
are obtained, which lead to more effective color model learning.

Note that we assume only a single object per image. Thus,
there is no normalization over the number of hypotheses.

D. Lying Pose Parsing
The Pictorial Structure model [6] represents the human

body as a tree-structured collection of limbs. To distinguish
those from parts in the detection stage, limb configuration is
written as V = {v1, . . . , vn}. Given an input image I and
the human model ϑ, we search for an optimal configuration
that maximizes the posterior V = arg max(P (V |I, ϑ)). In the
full-body cases, n = 10. The tree structure is denoted as E.

The appearance evidence is encoded in each node as A(vi).
Any two parts are connected if edge ei,j ∈ E. S(vi, vj)
captures the geometric constraints between them. The posture
posterior is written as a distribution including the contributions
from both appearance and spatial information.

P (V |I, ϑ) ∝
n∏
i=1

A(vi)︸ ︷︷ ︸
Appearance

·
∏

ei,j∈E
S(vi, vj)︸ ︷︷ ︸

Spatial Configuration

(4)

Model inference is done by two-pass sum product belief prop-
agation. The first pass starts from the leaves and terminates in
the root, whereas the second pass goes the other way around.
This procedure gives us the marginal posteriors for all limbs.
Pose parsing is performed iteratively so that we have a better
guess for the limb regions. The limb location prior is updated
by the previous pose posterior, which means pose parsing
guides future color model learning, and this again refines the
pose posterior.

We extend the parsing framework from [8] to enable multi-
view and full-body pose estimation. One critical drawback of
the approach proposed in [16, 8] is that no explicit search in
scale space is performed for the different limbs, which leads to
a rigid edge model in both limb sizes and limb center positions.
This constraint might be still acceptable in upright person
cases, since they have a regular proportion between limbs. Un-
fortunately, in lying pose cases, perspective distortion in limb
sizes occurs frequently, and also limb anchors with respect to
their parent limbs vary as body orientation changes, due to
perspective foreshortening. We present two improvements to
compensate this weakness in scalability, mainly by exploiting
cues from detection and segmentation.

Limb Pre-inference by Detection Parts. In our experiments,
we observed a strong correlation between the detected part

configuration L and the target limb configuration V . If our
detector is well trained, the detected parts will imply limb
locations. For instance, in our model, the first two parts
roughly locate the waist and head, respectively (see Fig. 5(a)).

This can be explained by the fact that both detection and
pose estimation formulate the problems following pictorial
structure. Both objective functions are defined in a log-linear
form, combining appearance and spatial information. Another
interpretation is that Eq. 1 is proportional to a maximum ap-
proximation of the posterior distribution, given a star structure
model and limbs represented as non-rotating boxes.

Driven by the connection between statistical parts and
semantic limbs, a pre-inference step is incorporated to link
the detection and pose estimation stages. L given by the
best hypothesis h is utilized to predict an initial pose V0,
which is later optimized by our pose estimation framework.
The inference function is modeled as a view-specific mapping
matrix Ac in the transformed space, as formulated in Eq. 5.

V0 = Ac(L0) (5)

Here, L0 is the projection of L at original image scale,
representing each part as upper-left and lower-right corners,
whereas limbs of V0 have one more dimension to determine
their orientations. The training of Ac is rather straight-forward,
via a linear regression with the input as latent detections
from training samples and the output as ground truth pose
annotations.

Sec. IV-D shows that starting with V0, lying pose estimation
works more effectively and yields a substantial improvement
on cases with a large degree of perspective distortion.

Adaptive Color Model Initialization. Starting from limb
pre-inference, region growing is performed on the foreground
probability map using the predicted centers of head and torso
as seeds. This step recursively evaluates new neighboring
pixels and adds them if their values are close enough to the
current mean. Iterated until convergence, two region masks
are obtained (see Fig. 5). The initial color models of head and
torso are learnt from probability distributions combining both
limb priors and generated color masks.

IV. EXPERIMENTAL RESULTS

In this section we present qualitative and quantitative eval-
uation results from the experiments. All experiments were
performed on a Ubuntu 10.04 (64bits) machine with 2.8GHz
quad-core Intel Core i7 CPU, 8GB of RAM.

A. Datasets

FT Lying Person Dataset. For the purpose of training, the
FT database is constructed in a well-controlled environment,
simulating camera conditions from a service robot scenario.
It has 507 samples with only one lying person instance for
each, containing 21 subjects in total. All images are taken by
one monocular camera with similar camera position setting,
i.e. a camera height of 1.2m − 1.6m and a tilt angle of 15◦,
pointing down.



Fig. 6. The first row: FT lying person dataset as training set. The
second row: a negative set containing mainly indoor images. The last
row: a challenging web image test set.

Indoor Image Set for Background Replacement. This set
contains 121 indoor images collected from the Internet.

Negative Set. In addition to the image set for background
replacement, the negative set also contains 267 indoor images
without persons and 72 ones with upright persons from the
Pascal09 Database [5].

Test sets. Test set A contains a positive set split from
FT and enriched by background replacement to a size of
840 images, and a negative set from the MIT Indoor Scene
Database [15] with 297 indoor images covering 7 categories
(e.g., bedroom, living room and dining room). No human is
present in this collection, which allows us to perform the
comparison experiment in Sec. IV-C. In order to demonstrate
our approach’s generalization performance, we also apply it to
Test set B, which contains 82 challenging lying pose images
collected from the Internet.

B. Evaluation Measures

In both detection and pose estimation stages, ’Area of
Overlap’ criterion [5] , named AOV from now on, is adopted
to validate hypothesis. A detection hypothesis is accepted as
a true detection if its bounding box BBp has a significant
overlap with the ground truth bounding box BBgt,

ao =
area(BBp ∩BBgt)
area(BBp ∪BBgt)

≥ 50%. (6)

In line with [5], detection performance is reported in terms of
average precision (AP) on precision-recall (PR) plots.

Again, due to perspective distortion, representing poses as
sticks, as proposed in [8], is no longer suitable. To evaluate
pose parsing performance, we propose to measure the AOV
between estimated limb segments and ground truth. Instead
of bounding boxes, the regions of interest are limb masks,
generated by segmenting the corresponding posterior maps.

C. Detection Performance

In order to evaluate detection performance, a set of models
with various parameter settings are trained on the FT dataset,
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Fig. 7. (a) (b) The mixture with seven parts has best detection
performance, achieving AP = 0.81. f/nf = with/without Mirror Ori-
entation Association. p/np = with/without Training Sample Padding.
(c) Detection performance comparison of one model set. The initial
root filter is equivalent to a HOG+SVM detector, which is enhanced
via several rounds of boosting [7]. Adding parts further improves the
performance. (d) The FT 7p fp mixture outperforms the Pascal09
model in lying pose detection. (e) Detection performance on the
more challenging Test Set B. Segmentation re-ranking contributes
yields a considerable performance improvement. (f) Quantitative pose
estimation performance comparison of our method against [16, 9] on
a subset (body orientation class = 0◦) of Test Set A given the same
detection windows. LP = limb pre-inference. PCP = the percentage
of correct limb poses. Note that the first two plots have different
scales to show a closer view.

named FT models. As Figs. 7(a) and 7(b) show, the mixture
model with seven parts without feature padding and with
mirror sample flipping (FT 7p fp) performs best. The part-
based model also outperforms standard HOG+SVM in lying
pose detection (Fig. 7(c)).

FT models v.s. Rotating Pascal’09 Model. To study the
performance degradation of a general person model on lying
poses, we conduct a detection experiment on Test Set A

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/
http://web.mit.edu/torralba/www/indoor.html
http://web.mit.edu/torralba/www/indoor.html


by rotating a model trained on the Pascal’09 person class
without pose constraint. To simplify, we name this model
as Pascal09 from now on. Since the the Pascal09 model is
vertically symmetric and is trained mainly on upright persons,
rotating is necessary for detecting multi-view lying poses.
Additionally, components in the Pascal09 model represent two
aspect classes, upper body and full body. In order not to miss
true detections from the upper body component, a polygon
annotation is used to properly validate detection hypotheses.

Testing of both the FT 7p fp mixture and the rotating
Pascal09 model on Test Set A results in the PR curves shown
in Fig. 7(d). Very distinct accuracies are achieved, AP 0.74
from the FT 7p fp Mixture vs. AP 0.37 by the rotating
Pascal09 model. This experiment shows that the perspective
foreshortening has a severe impact on detection accuracy. The
Pascal09 model fails in samples with significant perspective
distortion, whereas it reports aligned boxes that are closer to
true body regions in true detection cases.

Segmentation-based Re-Ranking. Segmentation is utilized
to link two key elements of our system, i.e. detection and
pose parsing. As mentioned in Sec. III-C, the foreground
probability map implies a better ranking of hypotheses scores.
In the experiment on the very challenging Test Set B, detection
precision is significantly enhanced by segmentation, as shown
in Figs. 7(e) and 8. However, segmentation is not able to
generate new hypotheses, meaning that misdetections in the
first stage are unrecoverable.

D. Pose Parsing Performance

Fig. 9 shows intuitively that the improvements proposed,
i.e. limb pre-inference by detection boxes and adaptive color
model initialization, can compensate for the perspective fore-
shortening effect and therefore achieve reasonable pose esti-
mation results on very challenging data. Mapping from the
detected parts to predicted limbs offers surprisingly good
initialization, especially for the torso and head. Moreover,
since we reduce the search space progressively, a speed-up
factor of more than 4 is achieved, compared to the original
image parsing framework by [16].

A final quantitative parsing experiment is conducted to com-
pare our method against state-of-the-art approaches [16, 9].
For a fair comparison, we only perform pose estimation on
a subset of Test Set A with the principal body orientation
close to the y axis of the image plane, which are analogous to
upright persons. As shown in Fig. 7(f), our system outperforms
the other two approaches, even with less iterations, showing
that our adaptive limb prediction brings significant advantages
under the high degrees of perspective distortion considered in
our application.

V. CONCLUSION

Driven by the fast involution of vision technology in recent
decades, videos and images have become more and more
important information sources in robotics community. Our
system alerts potential fall events through vision-based lying
posture recognition in still images. The whole pipeline extends

the current state-of-the-art approaches to multi-view full-body
cases. Compared to upright body poses, lying postures are
more challenging due to the loss of size proportion between
body parts. Our main contributions are: 1) We present a viable
approach to extend a part-based model to the multi-view case
for viewpoint invariant lying posture detection. 2) We exploit
the correlation between detected body parts, in the context of
the deformable part-based model [7], and limbs, in the context
of the Pictorial Structure model [6], in order to predict the sizes
and locations of limbs prior to pose inference. 3) We show how
the foreground map from segmentation can assist trained limb
location priors to guide appearance model learning. With the
help of these three adaptations, our system outperforms state-
of-the-art approaches [8, 18] for lying body pose estimation.

Our system can be further improved by incorporating ge-
ometric constraints. The knowledge about a scene’s ground
plane can help reject false alarms that are inconsistent with
scene geometry. It would also be interesting to explore the
possibility of validating detection by pose estimation. For
instance, the sum of pose pixel confidence gives a hint on
how reliable the current detection is. On the other hand, fall
detections could be validated via biological data of the user,
such as ECG wave.
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