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Abstract
We present a complete 3D in-hand scanning system that

allows users to scan objects by simply turning them freely
in front of a real-time 3D range scanner. The 3D object
model is reconstructed online as a point cloud by register-
ing and integrating the incoming 3D patches with the online
3D model. The accumulation of registration errors leads to
the well-known loop closure problem. We address this issue
already during the scanning session by distorting the object
as rigidly as possible. Scanning errors are removed by ex-
plicitly handling outliers. As a result of our proposed online
modeling and error handling procedure, the online model is
of sufficiently high quality to serve as the final model. Thus,
no additional post-processing is required which might lead
to artifacts in the model reconstruction. We demonstrate
our approach on several difficult real-world objects and
quantitatively evaluate the resulting modeling accuracy.

1. Introduction
3D scanning and modeling of real-world objects plays an

important role in many areas such as cultural heritage, ar-

chitecture, and entertainment. However, 3D modeling is of-

ten a time-consuming and costly process, preventing a more

wide-spread use. In archeology, for example, only the most

precious objects are typically scanned instead of the bulk of

the finds. In-hand scanning may alleviate that problem as it

simplifies and speeds up the scanning process, thus reduc-

ing time, cost, and man-power.

3D scanning generally consists of the following steps: 1)

recording a set of 3D range scans from an object, 2) align-

ing the individual surface patches, and 3) integrating these

surfaces into one seamless 3D mesh. In case the user is

not satisfied with the result, additional scans might become

necessary, making this a rather cumbersome process.

With an in-hand scanning setup [23], the user simply

turns the object in front of a real-time 3D scanner, and the

3D model of the object is reconstructed and displayed on-

line. The user can thus directly control the coverage and

quality of the reconstruction by turning the object appro-

priately until he/she is satisfied with the result, making the

scanning process fast and intuitive. Current in-hand scan-

ning approaches register the incoming 3D patches sequen-

tially [23, 15, 30], which leads to the well-known loop

closure problem: when performing a full scan around the

object, the accumulation of registration errors leads to an

offset at the scanning borders, resulting in visible artifacts

(Fig. 1). Current approaches therefore use an additional of-

fline optimization step to compensate for this problem and

remove accumulated artifacts. As a result, however, the on-

line model is only a preview model which may well deviate

from the final offline reconstructed model. Thus, an impor-

tant advantage of in-hand scanning systems, the direct and

reliable feedback, is lost.

In this work we propose an in-hand scanning system that

truly follows the WYSIWYG principle, yielding an online

reconstructed model to serve as the final result. Instead of

ignoring loop closure cases, our approach explicitly detects

and compensates for them on-the-fly by deforming the on-

line model appropriately. As our goal is to avoid the need

for post-processing altogether, the online model needs to be

accurate and robust. Our approach addresses this by han-

dling outliers using visibility constraints. We experimen-

tally show that our online model building method is similar

in performance to offline methods and that reconstruction

quality is visibly improved through online loop closing.
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Related Work. Due to the vast amount of research in

3D scanning and modeling, we only discuss the work most

relevant to our in-hand scanning system. A broader per-

spective of the complete 3D modeling pipeline is given

in [3]. For interactive applications, real-time, motion-

insensitive range scanner are necessary to provide input

data. Such systems have been proposed based on laser scan-

ners [12, 27], time-of-flight cameras [21], and structured

light [24, 31, 18, 29, 16]. Structured-light systems have the

advantage that they provide a full 2D depth map per frame

at a higher accuracy than current time-of-flight cameras.

In order to build a 3D model from depth scans, the indi-

vidual 3D surface patches need to be registered. ICP [4, 6]

and its variants [24, 9] are the technique of choice for this

geometric registration when an approximate alignment is

available. For in-hand scanning systems, this is typically

the case due to the high temporal resolution of the scanner.

The ICP registration can additionally be extended to texture

[3, 30], which is however not yet used in our system.

Interactive in-hand 3D modeling systems have recently

been demonstrated by [23, 15, 30]. In those systems, the

input depth scans are registered sequentially and are inte-

grated into a simple preview model. Outliers are handled

by aggressive data pruning, but non-detected outliers will

remain in the model. In order to remove the resulting accu-

mulation errors and loop-closure artifacts, in-hand scanning

systems typically perform an offline global registration op-

timization step when all scans have been collected [22, 14,

19]. After offline registration all input scans are integrated

and converted into a seamless mesh [7, 13, 10].

In contrast, we address the loop closure problem using

an idea inspired by online loop closing methods employed

in robotic localization and mapping [2]. As in the standard

in-hand scanning pipeline, we register depth scans sequen-

tially to build up an online model. However, we explicitly

try to detect loop closure cases and, once such a case has

been found, we deform the online model such that the dis-

continuous surface borders fit together and the accumulated

error is distributed over the entire online model. Many dif-

ferent methods for constraint-based shape deformation have

been proposed in the past [1, 25, 26, 5]. Here, we use a

graph-based space deformation method similar to [26] due

to its efficiency and as-rigid-as-possible deformation.

[27, 8] also propose a system that returns the online

model as the final result. Their approach employs implicit

surfaces for the complete modeling pipeline. In contrast to

our method, however, they do not attempt to solve the loop

closure problem and do not explicitly handle outliers.

2. Online Model Building
In this paper, we propose an online model building ap-

proach that reconstructs a 3D model of an object from a se-

quence of depth scans. This task poses several requirements

Figure 1. Visualization of the loop closure problem: five range

scans of a rotating gear wheel are registered. A pairwise alignment

error of only ±1◦ results in a considerable surface discrepancy

where the model actually should close (indicated by red circles).

on the underlying representation. As the input data is noisy,

several measurements need to be integrated for each sur-

face part for accurate reconstruction. Since the input may

also contain outliers, we need to be able to to differentiate

between true surface points and erroneous parts. Last but

not least, the representation needs to be compact and easy

to modify in order to facilitate online loop closure.

We address those requirements by quantizing the surface

and representing the model as a set of small oriented discs

or surface elements (surfels) whose size is directly depen-

dent on the scanning resolution. This quantized represen-

tation allows us to easily integrate multiple depth measure-

ments and to update the surface estimate when additional

measurements become available. In addition, we collect

visibility statistics for each surfel to determine from which

orientations it has been observed. This allows us to differ-

entiate between likely true surface points which have been

observed from many different directions and possible out-

liers for which this is not yet the case.

In the following, we describe the input data our approach

is based on (Sec. 2.1) and the basic surfel representation

(Sec. 2.2). In order to bring the online surfel model into cor-

respondence with the current scan, we perform rigid regis-

tration with a fast ICP algorithm (Sec. 2.3). After successful

registration, the new scan is then integrated with the surfel

model, as described in Sec. 2.4. Sec. 3 then presents our

extension to explicitly handle the loop closure problem.

2.1. Data Acquisition
The in-hand scanning system is built on top of our real-

time structured-light range sensor [29], running at 30 fps.

This setup delivers one depth map Dt (VGA resolution) per

frame t, containing for each pixel uk a depth value d∗k (in

mm) corresponding to a 3D position p∗
k.

Input Data Processing. Morphological operators are used

to remove small isolated geometry patches that are likely

outliers. Normals n∗
k are calculated using the method de-

scribed in [20]. In order to penalize potentially inaccurate

vertices, each depth value is assigned an input confidence

value c∗k ∈ [0, 1], which is initialized to c∗k = 0 at a depth

map discontinuity, otherwise c∗k =1. The confidence values

are then spread out by a diffusion process [28]. Fig. 2(a)

depicts an input scan colored according to confidence.
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Figure 2. a) Input depth map of a shoe. Green represents high data

confidence, red represents low data confidence. b) Model surfel: a

surfel is described by its position p, normal n and radius r.
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Figure 3. a) Surfel visibility confidence: a pair of a polar angle

θ and an azimuth angle ϕ characterizes a view direction for each

surfel. The bookkeeping of the view direction from which the sur-

fel has already been observed is done with a binary histogram (64

bins). b) Hexagonal surfel approximation for efficient rendering.

2.2. Surfel Representation
We adopt an explicit surface representation similar

to [11] by representing the model surface Mt as set of N
surfels (see Fig. 2(b)), each having a position pi, normal

vector ni, radius ri and visibility confidence vi. The use

of surfels instead of a triangle mesh has the crucial advan-

tage that the unstructured set of surfels can easily be kept

consistent throughout any modifications. In contrast, for a

triangle mesh, considerable efforts are needed to guarantee

the integrity and quality of the mesh topology after adding,

updating, or removing any vertices.

Visibility Confidence. In order to estimate its reliability,

each surfel is assigned a visibility confidence vi ∈ [0, 64].
A surfel is assumed to be correct if its position is confirmed

by several observations from different directions. This is

unlikely to occur for wrong surfels due to outliers. When a

new surfel is created, a spherical coordinate system is gener-

ated with the estimated surfel normal as the first base vector

and an arbitrary vector lying in the surfel plane as second

base vector. View directions are then characterized by po-

lar and azimuth angles. The view directions a surfel has

been seen from are recorded in a two-dimensional binary

histogram (see Fig. 3(a)). For our setup, a surfel has high

visibility confidence if it has been observed in at least 6 bins.

Visualization. A surfel is efficiently visualized as a

hexagon (Fig. 3(b)) by rendering four triangles, which are

directly calculated on the GPU from pi, ni and ri.

2.3. Registration
We apply fast ICP [24] to align the online model Mt

with the input data of the current depth map Dt. All sur-

fels of Mt are iteratively projected into Dt and the optimal

rigid transformation [Rt, tt] is calculated by minimizing the

point-surface distance:

Ep2s =
N∑

i=1

‖wi n∗�
i (Rtpi + tt − p∗

i ) ‖22 (1)

where p∗
i is the corresponding point found by projection;

n∗
i is the associated normal; and wi is a correspondence-

specific weighting term based on normal compatibility and

dynamic distance threshold [15]. For point and normal

look-up in the depth map we use bilinear interpolation.

Registration Failure. In order to check for registration

failure, a virtual depth map D̂t is generated of the current

model Mt using the rigid transformation [Rt, tt] and the

intrinsics of the range sensor. Each pixel uk is checked

whether it is an inlier or outlier based on a maximum dis-

tance threshold on the absolute depth difference between

virtual rendering and input scan (2mm in our system setup).

If the total ratio outliers
inliers+outliers < treg = 0.05, the regis-

tration is successful. We do not differentiate between scan

occluding model, or model occluding scan. While the first

may be valid, we still count these as outliers for robustness.

Due to the interactive nature of the system, the user can ro-

tate the object such that registration succeeds again.

2.4. Integration
After successful registration, the current depthmap Dt is

used to update the online model Mt. This is done using

three basic operations: surfel update, surfel addition and

surfel removal. Surfels that are in correspondence with the

input scan are updated by integrating the depth measure-

ments. New surfels are created for parts of the scan that

are not explained by the current model. Surfels that are not

confident and in conflict with the current scan are removed.

Surfel Update. For each surfel, pi and ni are transformed

using the current rigid transformation:

p′
i = Rtpi + tt (2)

and accordingly for n′
i. The z component d′i = p′

i(z) is

the depth of the surfel. It is compared against the depth d∗i ,

normal n∗
i and confidence c∗i of the input scan Dt, as well

as the depth d̂i and v̂i from the virtual depth map D̂t. There

are 4 different update cases:

(1) If the normal n′
i deviates by more than taway = 80◦

from the principal axis of the range sensor or if the input

scan has low confidence (c∗i < cmin = 0.8), the surfel is

not updated, as this indicates that it is not visible or not in

correspondence with the input scan.

(2) |d′i − d∗i | < dmax: We assume that surfel and input

scan are in correspondence if their distance is less than a
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threshold dmax =5mm. In this case, the surfel position and

normal are updated with the new measurements by comput-

ing a running average.

(3) d′i − d∗i < −dmax: The input scan is behind the model

surfel, which results in a visibility conflict. In case the surfel

has a low visibility confidence, the surfel is assumed to be

an outlier and is replaced by a new surfel at the scanner

depth. Otherwise, the scan is considered the outlier.

(4) d′i − d∗i > dmax: The input scan occludes the model

surfel. By itself this is not necessarily a visibility conflict,

as the scan might observe a different surface. We try to

detect this by checking for self-occlusions using the model

acquired so far. If no self-occlusion is found, this is treated

as visibility conflict and is handled as in case 3. However,

given a self-occlusion of the model, d′i − d̂i > dmax, the

model surfel is removed if the surfel has low confidence, is

occluded by high-confidence surfels (v̂i > vmin) that are in

correspondence, and if the surfel should be seen from this

viewpoint (based on the visibility confidence histogram).

This test may be slightly inaccurate, but it is an efficient

strategy for removing outliers located inside the object.

Surfel Addition. After all surfels have been updated,

surfels are added in those parts where the scanner depth

map is not covered by model surfels. New surfels are

only introduced where the input data is valid and confident

(c∗k ≥ cmin). After each surfel addition and update, the sur-

fel visibility confidence histogram is updated accordingly.

Surfel Removal. Model surfels that are not confident are

removed if they are in conflict with the input scan, as ex-

plained above. During scanning, many correct surfels, as

well as some possible outliers, are added. Correct surfels

are re-observed from many view directions and thus reach

a high confidence value. In contrast, outliers are unlikely to

be seen again and will be deleted if a conflict appears. In

order to keep the model lightweight, we additionally apply

an erosive strategy: every surfel that has not been updated

within the last tstarve =30 frames and has not yet reached a

minimum confidence value vstarve =3 is removed.

Surface Growing. Surfels in cavities will only be visible

from few view directions and never attain a high visibility

confidence. Hence, the erosive strategy will always remove

these surfels. Thus, a second strategy is employed once the

coarse object structure has been successfully acquired (de-

termined by the user) and no more unsolved loop closure

problems remain (see Sec. 3). The model is cleaned up, i.e.

all surfels having a confidence below vmin are deleted, and

the lost parts are re-scanned with surfel removal switched

off. In order to avoid outliers, surfels are only added if there

are already some model surfels close-by with similar orien-

tations. This strategy is referred to as surface growing [11].

In detail, a potential surfel is only added, if it is at the bor-

Figure 4. Solution to the loop closure problem: When a loop clo-

sure case is detected, our algorithm proceeds by only registering

and integrating new input data with one of the ’meeting’ borders.

Once the overlap of the involved surface patches is sufficiently

large, the model is closed by an as-rigid-as-possible deformation.

der of a model surfel and if their normals do not deviate by

more than 45◦.

Radius Estimation. Instead of fixing the radius of each

surfel to some constant value, we adapt the surfel radius ac-

cording to the theoretical accuracy limit of the input device,

as the reconstructed model cannot be more accurate than the

resolution of the scanner. The radius for each surfel is es-

timated conservatively to cover one pixel of the input data

using the following equation:

ri =
1√
2

d′i/f

n′
i(z)

(3)

where f is the focal length of the range sensor. The sur-

fel radius is only updated if this result is smaller than the

current estimate. With this update strategy, it is possible

to increase the level of detail in the model by bringing the

object closer to the camera.

2.5. In-hand Scanning
The interface of our in-hand scanning system is similar

to [23]. The user holds the object in front of the scanner,

and the reconstructed online model is displayed in real-time.

The scan is overlayed over the model to facilitate reinitial-

ization. The model surfels are colored according to the vis-

ibility confidence such that the user can see which parts are

not yet confident. Depending on the application, the final

model can be converted to a watertight triangle mesh af-

ter the scanning session using the freely available software

from [17]. This step also fills the parts that cannot be ac-

quired due to limitations of the scanner hardware.

3. Online Loop Closure
The online model building method from the previous

section can be used for in-hand scanning as it stands. How-

ever, as soon as the scanned object has been turned for al-

most a full rotation, the growing model surface reaches one

of its older borders from the other side. In such a case, the

accumulated registration error may have grown to a degree

that the growing surface does not coincide with its own bor-

der anymore and no proper alignment can be found. This is

referred to as the loop closure problem, visualized in Fig. 1.
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Figure 5. Topology graph. In this example, three surfels act as

topology graph nodes, indicated by the yellow bullets. Node 1 and

2 are connected, since both have been observed in scan 1. The

same holds for nodes 2 and 3 in scan 2. However, node 1 and 3

have never been seen together, so they are not connected. Every

surfel is properly represented since all surfels are attached to at

least one node (indicated by green dashed arrows).

In the following, we present an algorithmic extension that

enables our system to automatically detect and close loops,

thus removing discontinuities at the model boundaries.

Fig. 4 visualizes the main idea of our approach. We solve

the loop closure problem by discriminating between the dif-

ferent model surface borders. When a loop closure case

is detected, the input data is only registered and integrated

with one of the borders. Once the overlap of the two in-

volved surface patches is sufficiently large, the input data is

registered to all borders individually, and the loop is closed

by an as-rigid-as-possible deformation, bending the over-

lapping surface parts onto each other.

At the core of our approach lies a sparse topology graph.

This graph fulfills two important functions. It helps discrim-

inate between the different borders and it contributes con-

nectivity information that is used for the actual deformation.

In the following, we describe the details of this representa-

tion and how it is used for expressing and updating connec-

tivity information (Sec. 3.1). Sec. 3.2 then shows how the

basic registration and integration methods are adapted to in-

clude the topology graph, and Sec. 3.3 finally presents the

as-rigid-as-possible deformation for loop closure.

3.1. Topology Graph
Whenever two surfels have been seen together in a scan,

the scan data places a constraint on the relative positions

of these two surfels. The topology graph is used to encode

those constraints in a sparse manner. It is laid over the sur-

face consisting of thousands of surfels and is represented

by a set of S nodes (a subset of the surfels). Two nodes are

connected by an undirected edge whenever they have been

seen together in any of the original scans (see Fig. 5).

Each surfel (and thus also each node) stores a list of

nodes it has been observed with. We say it is ’attached’ to

them. Additionally, each surfel stores which attached nodes

are closer than a given threshold tr. Trivially, this set of

nodes to which a surfel is ’attached in range’ is a subset

1. 2.

camera view

scan

3.
4.

Figure 6. Steps of the loop closure procedure: 1) Determine

the currently visible nodes. 2) Intersect the visible nodes with

the topology graph and decompose into connected components.

3) Register each component individually to the input scan. 4) De-

form the model surface if components have sufficient overlap.

of the nodes to which it is attached. A surfel is properly

represented in the topology graph if it has at least one node

attached in range. The threshold tr implicitly defines the

density of the topology graph and is set in our experiments

to tr = 15mm. After every modification of the surfel cloud,

the topology graph has to be updated as well. The required

tasks for the possible model modifications are:

Surfel Addition. The new surfel is attached to all currently

visible nodes. Furthermore, it has to be determined which

of those nodes are closer than tr to the surfel. In case no

node is closer than tr, the surfel is added as a new node.

Node Addition. The new node is added and all visible

nodes, as well as all visible surfels, are attached. All sur-

fels closer than tr are additionally attached in range. Node

addition is dependent on the surfel processing order.

Node Deletion. A node is deleted when the corresponding

surfel is removed. Prior to surfel deletion, all nodes and

surfels are disconnected from that node.

Surfel/Node Update. Whenever surfel properties (posi-

tion, normal, or radius) are updated, the surfel is attached

to all currently visible nodes. Whenever a node needs to

be deleted, it might happen that there are surfels that are

attached to that single node only and will not be properly

represented any more after the node deletion. Such surfels

with no attachments are called loose. As soon as a loose sur-

fel can be updated (thus it is visible once more), the surfel

is integrated again into the topology graph.

The complexity for the topology graph update is

O(NS), though S << N and all operations can be effi-

ciently implemented using bitsets.

3.2. Component Registration & Integration
The online model building method needs to be adapted

to properly include the topology graph. At each frame,

we determine the currently visible nodes (subset of visi-

ble surfels) by checking for each node if its distance to the

scan is below dvis = 5mm. The nodes are divided into a
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Figure 7. a) Synthetic rendering of boris model. b) Comparison of integration algorithms: online integration performs similarly to offline

integration [10]. Both introduce a small error for 0 Gaussian noise compared to the baseline (using all input scan vertices), but are

successful in handling the noise of the input scans. c) Comparison of registration algorithms depending on the amount of Gaussian noise

on the simulated input scan. All methods perform similarly, though online loop closure is always better than no loop closure.

set of L connected components by intersecting the set of

visible nodes with the topology graph (see Fig. 6). Only

the largest connected component (main component) is used

for registration and integration, i.e. only surfels are taken

into account that are attached to any of the nodes in this

main component. Thus, when looping around the object,

the other surface border will create a second unconnected

component. Surfels belonging to that other component are

ignored. This generalizes to any number of components.

Thus, on its own, the main component will grow over the

other border surfaces, creating the necessary overlap for the

model deformation described in the next section.

3.3. As-rigid-as-possible Deformation
The full procedure for loop closure is visualized in Fig. 6.

Once the overlap between the model components and the

input scan has become large enough (each component ex-

plains more than 70% of the depth scan), the overlapping

borders are combined. This is done by registering each of

the L components individually to the current input scan.

The resulting constraints on each surfel are then used to de-

form the complete model as-rigidly-as-possible in order to

connect the separate components. Once the model is de-

formed, the components are joined.

Deformation Using the topology graph we employ an

as-rigid-as-possible deformation similar to the method de-

scribed by [26]. This space deformation method is general

enough that it can be applied to any object, while providing

natural feature preservation and efficiency. A space defor-

mation is represented by a collection of rigid transforma-

tions organized in the topology graph structure.

Each graph node gj is assigned a transformation

[Rj , tj ], inducing a transformation of the nearby space:

p̃ = Rj (p− gj) + gj + tj . (4)

In the space between graph nodes, the influence of individ-

ual graph nodes is smoothly blended, similar to skeleton-

subspace deformation from character animation. The de-

formed position p̃i of each surfel i is calculated as weighted

sums of its counterparts after application of the deformation

graph transformations:

p̃i =
S∑

j=1

wj (pi) [Rj (pi − gj) + gj + tj ] (5)

where the weights wj (pi) depend on the distance of the

surfel to the k-nearest nodes. The weights for each surfel

are precomputed according to

wj (pi) = (1− ‖pi − gj‖2/dmax)2 (6)

and then normalized to sum to one. dmax is the distance to

the k + 1-nearest node. The experiments in [26] indicate

that setting k=4 is sufficient.

The unknowns of the optimization problem are the ro-

tation matrices and translation vectors of each node. Rigid

registration of each component yields a rotation matrix R�

and translation vector t�. This rigid transformation gives a

positional constraint for each visible surfel i of subpart � on

how it is registered to the input data:

p�
i = R�pi + t� (7)

The deformation is formulated as an optimization problem

consisting of a positional energy term Epos and a regular-

ization term Ereg:

Epos =
L∑

�=1

∑

i∈H(�)

‖p�
i − p̃i‖22 (8)

Ereg =
S∑

j=1

∑

n∈Ω(j)

‖Rj (gn − gj) + gj + tj − (gn + tn)‖22
where L is the number of components, H(�) is the set of

visible surfels in component �, and Ω(j) is the set of con-

nected nodes of node j. The regularization term makes the

deformation smooth and as-rigid-as-possible by penalizing

the difference between the actual transformation of a node

and the transformation defined by a connected node. The

optimal registration is found by minimizing a weighted sum

of the energy terms:
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Figure 8. a) Measured depth distortion of our range scanner.

b) Comparison of registration algorithms when scanner specific

depth distortion is applied additionally to the noise. Online loop

closure significantly improves the results.

min
R1,t1...RS ,tS

Epos + wregEreg (9)

where wreg = 0.1 in our system. Eq. 9 is non-linear in

terms of the 7S unknowns that define the rotation matrices

and translation vectors of each node. Note that we represent

Rj using quaternions. The non-linear optimization is very

sparse and can be solved using Gauss-Newton iterations in

conjunction with an efficient sparse linear solver.Once the

optimal deformation is found, the surfels are deformed and

both surfels and topology graph are updated.

4. Experimental Results
Some objects reconstructed with our in-hand scanning

system are shown on the front page of this paper (rendered

surfel clouds). All parameters have been set experimentally

and left unchanged throughout all experiments. The in-hand

scanning system in action is best seen in the supplementary

video. Most of the presented algorithms have been imple-

mented on the GPU. For a typical hand-sized object con-

sisting of about 100K surfels, the system runs at 20 fps.

Online loop closure takes 2-3 seconds, but is typically only

performed once or twice per scanning session and thus does

not disturb the interaction.

4.1. Experiments on Synthetic Data
In order to quantitatively evaluate our in-hand scanning

system, we performed experiments using synthetic data.

For this purpose, we created a virtual scanning sequence of

the boris object from [30], rotating once around the x-axis

and once around the y-axis (see Fig. 7(a)). The sequence

consists of 125 depth scans. For evaluation, we register

the reconstructed point clouds with the original model us-

ing ICP and calculate the RMS error in mm between recon-

struction and original. The size of boris is approximately

100mm in all dimensions. The virtual distance from the

range sensor is 1000mm with approximately 1mm lateral

resolution, resulting in approximately 8K vertices per scan.

Integration. In order to evaluate the quality of the integra-

tion, we disable registration and use the reference transfor-

a) b) c)

Figure 9. a) Reconstructed banana. b) Registration without loop

closure (banana cross-section): the loop closure error (top) is only

compensated for locally (bottom) by averaging out the error at the

border overlap. c) Registration with loop closure: the loop closure

error (top) is compensated for globally, spreading the accumulated

error over the full model. Note in particular the distortion of the

left and bottom surface parts.

mations given by the synthetic rendering instead. As in-

tegration methods we compare simply taking all vertices

from the input scans, the offline method from [10] (which

produced the best results of the offline integration meth-

ods we tested), and our proposed online modeling method.

Fig. 7(b) shows the quality of the integration procedures for

different noise levels of the input data. As expected, when

simply using all points the error increases linearly with the

noise level. Both the online and the offline method perform

similarly, introducing a slight error (0.035mm), but han-

dling noise well. Thus, using the online model does not de-

grade the quality of the integration here. Note that the noise

level of our scanner is typically in the range of 0.2−0.4mm.

Registration. The registration quality is evaluated by com-

paring the reconstruction using 1) the reference transforma-

tions, 2) sequential registration with offline multiview op-

timization [23], 3) online registration without loop closure

and 4) online registration with loop closure. All methods are

used in conjunction with our proposed integration method.

In a first experiment, we only add Gaussian noise to the

input data. Fig. 7(c) shows that all methods perform sim-

ilarly and that using online loop closure does not degrade

the results. Note that white noise on its own seems to only

introduce a minimal loop closure discontinuity.

In a second experiment, we also model the distortion of

our scanning setup in addition to white noise to better reflect

real-world conditions. For this, we recorded a planar sur-

face with our scanner and fit a plane to the smoothed data.

The deviation of the smoothed data to the planar surface is

used to generate a distortion map (see Fig. 8(a)), model-

ing pattern artifacts and calibration errors of our setup (We

verified that the error does not come from the planar sur-

face itself). Fig. 8(b) shows that using online loop closure

significantly improves the reconstruction results compared

to ignoring the loop closure problem. Offline optimization

is still better than online optimization, but cannot be seam-

lessly embedded into the interaction.
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Figure 10. a) Reconstructed shoe. b) Close-up view without loop

closure. c) Close-up view with loop closure. d) View of the two

unconnected surface parts leading to the loop closure problem. e)

The surface discontinuity is prominent in the zoomed view. f) No

loop closure averages out the discontinuity resulting in a noisy and

distorted reconstructed geometry. g) Online loop closure correctly

compensates for the discontinuity.

4.2. Experiments on Real Data
Fig 9 and Fig 10 demonstrate the benefit of using on-

line loop closure on real data. Looking at the cross-section

of the reconstructed banana in Fig 9, we can observe that

without loop closure, the accumulated registration error is

only compensated for locally by the integration procedure,

resulting in an artificially strong bending of the surface. In

comparison, using loop closure, the error is spread globally

by distorting the entire model. The effect of locally aver-
aging out the error and the resulting artifacts are shown in

the reconstructed shoe in Fig 10. The loop closure problem

appears at the border of the sole, where the meeting surface

boundaries generate a discontinuity. With loop closure, the

surface boundaries are correctly stitched, whereas without

loop closure the two surfaces average out, resulting in a

noisy and distorted geometry.

5. Conclusion
We have presented a complete in-hand scanning system

that returns an online reconstructed 3D model of sufficient

accuracy to serve as the final result. The loop closure prob-

lem that arises during scanning is detected and compensated

for on-the-fly by deforming the model appropriately. Thus,

no additional post-processing is required.

The online loop closure distributes the accumulated reg-

istration error evenly by distorting the model. It assumes,

however, that all registration errors are fairly small, and it

cannot compensate for single completely erroneous regis-

trations. Similarly, the accumulated error needs to be small,

as the overlap between surface borders is measured directly

in the input scans. However, this is no problem in our setup,

as our range scanner generally provides sufficient accuracy.

The in-hand scanning system currently only uses geom-

etry. In future work, we plan to also incorporate texture into

the online model and to extend the method to allow for de-

forming objects, such as for the scanning of a human hand.
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shapes: reconstruction and parameterization from range scans. ACM
Trans. Graph., 22:587–594, 2003.

[2] A. Angeli, S. Doncieux, J.-A. Meyer, and D. Filliat. Real-time visual

loop-closure detection. In ICRA ’08, 2008.

[3] F. Bernardini and H. Rushmeier. The 3D model acquisition pipeline.

Comp. Graph. Forum, 21:149–172, 2002.

[4] P. J. Besl and N. D. McKay. A method for registration of 3-D shapes.

PAMI, 14:239–258, 1992.

[5] M. Botsch and O. Sorkine. On linear variational surface deformation

methods. Trans. Vis. Comp. Graph., 14:213–230, 2008.

[6] Y. Chen and G. Medioni. Object modelling by registration of multi-

ple range images. IVC, 10:145–155, 1992.

[7] B. Curless and M. Levoy. A volumetric method for building complex

models from range images. In SIGGRAPH ’96, 1996.

[8] J.-D. Deschenes, P. Lambert, and P. Hebert. Interactive modeling

with automatic online compression. In 3DPVT ’06, 2006.

[9] N. Gelfand, S. Rusinkiewicz, L. Ikemoto, and M. Levoy. Geometri-

cally stable sampling for the ICP algorithm. In 3DIM, 2003.

[10] G. Guennebaud and M. Gross. Algebraic point set surfaces. ACM
Trans. Graph., 26:23, 2007.

[11] M. Habbecke and L. Kobbelt. A surface-growing approach to multi-

view stereo reconstruction. In CVPR ’07, 2007.

[12] A. Hilton and J. Illingworth. Geometric fusion for a hand-held 3d

sensor. MVA, 12:44 – 51, 2000.

[13] A. Hilton, A. Stoddart, J. Illingworth, and T. Windeatt. Implicit

surface-based geometric fusion. CVIU, 69(3):273 – 291, 1998.

[14] D. F. Huber and M. Hebert. Fully automatic registration of multiple

3D data sets. IVC, 21:637–650, 2003.

[15] T. Jaeggli, T. Koninckx, and L. V. Gool. Online 3d acquisition and

model integration. In Pro. Cam., 2003.

[16] H. Kawasaki, R. Furukawa, R. Sagawa, and Y. Yagi. Dynamic scene

shape reconstruction using a single structured light pattern. In CVPR
’08, 2008.

[17] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruc-

tion. In SGP ’06, 2006.

[18] T. P. Koninckx, T. Jaeggli, and L. V. Gool. Adaptive scanning for

online 3d model acquisition. In CVPRW ’04, 2004.

[19] S. Krishnan, P. Y. Lee, J. B. Moore, and S. Venkatasubramanian.

Global registration of multiple 3D point sets via optimization-on-a-

manifold. In SGP ’05, 2005.

[20] N. Max. Weights for computing vertex normals from facet normals.

J. Graph. Tools, 4:1–6, 1999.

[21] MESA. http://www.mesa-imaging.ch/.

[22] K. Pulli. Multiview registration for large data sets. In 3DIM, 1999.

[23] S. Rusinkiewicz, O. A. Hall-Holt, and M. Levoy. Real-time 3D

model acquisition. ACM Trans. Graph., 21:438–446, 2002.

[24] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algo-

rithm. In 3DIM ’01, 2001.

[25] O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In

SGP ’07, 2007.

[26] R. W. Sumner, J. Schmid, and M. Pauly. Embedded deformation for

shape manipulation. ACM Trans. Graph., 26:80, 2007.
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