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Abstract

An increasing number of photos in Internet photo collec-
tions comes with watermarks, timestamps, or frames (in the
following called WTFs) embedded in the image content.
In image retrieval, such WTFs often cause false-positive
matches. In image clustering, these false-positive matches
can cause clusters of different buildings to be joined into
one. This harms applications like landmark recognition
or large-scale structure-from-motion, which rely on clean
building clusters. We propose a simple, but highly effective
detector for such false-positive matches. Given a matching
image pair with an estimated homography, we first deter-
mine similar regions in both images. Exploiting the fact that
WTFs typically appear near the border, we build a spatial
histogram of the similar regions and apply a binary clas-
sifier to decide whether the match is due to a WTF. Based
on a large-scale dataset of WTFs we collected from Inter-
net photo collections, we show that our approach is general
enough to recognize a large variety of watermarks, time-
stamps, and frames, and that it is efficient enough for large-
scale applications. In addition, we show that our method
fixes the problems that WTFs cause in image clustering ap-
plications. The source code is publicly available1 and easy
to integrate into existing retrieval and clustering systems.

1. Introduction
In recent years, the number of Internet images containing

specific artifacts has been increasing dramatically (Fig. 1).
One reason is a trend in smartphone camera apps to allow
the user to add photo frames or worn-out border effects
to their photos to simulate a vintage look. Amateur and
professional photographers often add visible watermarks in
the shape of logos or signatures to their photos. Moreover,
many users set their cameras to embed a visible timestamp
in the image’s pixel data. Such WTFs (Watermarks, Time-
stamps and Frames) are becoming an increasing problem
for Internet Vision applications.

If a WTF is present in two otherwise unrelated images, it

1http://www.vision.rwth-aachen.de/software

often causes a false-positive match. This particularly affects
local feature based image retrieval methods [18, 19, 27], be-
cause they only require images to share a small part of their
content to form a match. For example, [17] observed that
logos and frames in X-ray images are a frequent cause of
false-positive matches in medical image retrieval. Further-
more, WTFs affect image clustering and landmark mining
techniques [2, 4, 10, 21, 22, 23, 31, 32, 37]. These ap-
proaches typically operate on a matching graph in which
two images are connected if they have shared content. This
graph is built using local feature based image retrieval meth-
ods. A WTF can cause two images to share an edge,
even though they show different objects, and this false-
positive edge can cause unrelated clusters to be joined into
one (Fig. 9). Image clustering often serves as the basis
for Landmark Recognition [2, 10, 22, 37] which relies on
pure clusters that each contain just one object or build-
ing. If this is not the case due to WTFs randomly link-
ing unrelated images, a recognition system will confuse the
joined buildings. Moreover, WTFs can form non-object
clusters. For example, Chum et al. [5] report that time-
stamps form pseudo clusters when applying a small-object
discovery algorithm. Finally, WTFs can disturb large-
scale structure-from-motion engines based on Internet pho-
tos [1, 7, 9, 28, 29]. If WTFs are present in the input pho-
tos, reconstruction will either fail completely or produce in-
correct reconstructions where unrelated buildings are con-
nected by photos containing WTFs. WTFs practically af-
fect all vision datasets crawled from the web, such as OX-
FORD BUILDINGS [19] and PARIS BUILDINGS [20], IMA-
GENET [6], the DUBROVNIK and ROME datasets [13], EU-
ROPEAN CITIES 1M [2], and PARIS 500K [30], to name
but a few. Moreover, companies like Google, Facebook or
Yahoo (Flickr) rely on massive corpora of Internet images
to build their vision-based services.

While several approaches exist for detecting and read-
ing timestamps in photos [3, 12, 8, 26], most approaches
for detecting visible watermarks are targeted at videos
[33, 16, 11]. Because they make strong assumptions about
the appearance and position of the timestamps or water-
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Figure 1. Examples of Watermarks (left), Timestamps (middle), Frames (right). Top: Original images, Bottom: WTFs in higher resolution.

marks, they would fail when applied to the variety of WTFs
present in Internet photos. So far, there is no unified ap-
proach for detecting watermarks, timestamps, and frames.

In this paper, we propose a simple but effective method
to detect whether a match between two images is due to a
WTF. Our approach can be applied to filter image retrieval
results and to prevent false-positive matches when building
a matching graph for image clustering. It is general enough
to detect watermarks, timestamps, and frames alike, while
being fast enough to be integrated into an existing retrieval
or clustering system without introducing too much compu-
tational overhead. Given an image pair and its estimated
homography, our approach computes a map of highly sim-
ilar image regions and builds a spatial histogram from it.
This histogram serves as input for a binary classifier that
decides whether the match was caused by a WTF.

To evaluate our approach, we created a challenging
dataset containing 3.6k real-world WTF and 33k non-WTF
image pairs mined from Internet photos of Paris. Further-
more, we show that in image clustering, our method ef-
fectively prevents clusters of different objects from being
joined and eliminates pseudo-clusters formed by WTFs.

2. Related Work
Most of the work on detecting and reading timestamps in

photos has focused on scanned analog photos and thus on
dot font and 7-segment timestamps exposed onto the ana-
log film. While Chen et al. [3] and Fumin et al. [8] perform
template matching with manually created digit templates,
Li [12] uses Self-Generating Neural Networks (SGNNs) to
model digit appearance. Chen et al. [3] make no assump-
tions on timestamp position, Fumin et al. [8] and Li [12]
limit their search to only the four image corners, while Sha-
hab et al. [26] learn location priors from a training set. Un-
like these works, our goal is not to segment or read time-
stamps, but merely to detect their presence.

Müller et al. [17] observed that false positives in radio-
logical image retrieval are often caused by text, logos and
frames in the X-ray images. Because in this application,
the overlays are separated from the content and the back-
ground is always black, connected components analysis and
thresholding suffice to remove the WTFs. While the goal
and motivation of [17] are very similar to ours, general In-
ternet photos require more elaborate methods since content
and overlays have a much higher variability in appearance.

A related line of research is to detect text and timestamps
in videos. Sato et al. [24] and Yin et al. [34] exploit the con-
stantly changing background and apply a running temporal
minimum over the image intensity to isolate timestamps.
This is not applicable in our setting where only two im-
ages with an overlay are given that might not have as much
background variation. Another approach that only works on
videos was used by Li et al. [14] and Yu et al. [35]. In both
their cases, the timestamp includes seconds, which enables
searching for parts of the image that change every second.
Li et al. [14] do not even use OCR, but infer the passed time
based on the changing pattern of the clock digits.

Meisinger et al. [16] and Yan et al. [33] address the prob-
lem of removing TV station logos from videos. Both use a
simple frame differencing approach, which is however only
effective with dynamic backgrounds and non-transparent
logos. Therefore, Yan et al. [33] additionally use a Bayesian
classifier with a location prior that favors the image corners.

Zhang et al. [36] aim to detect objects that have been
pasted onto images. Like ours, their method works on pairs
of images related by a homography. Assuming that the
pasted object does not obey the homography, they warp the
images onto each other and subtract them. Image regions
with high pixel-wise difference are assumed to be the pasted
object. In contrast to our work, their method assumes that
the image pair shows the same subject and an additional
pasted object. WTF matches, on the other hand, have differ-
ent subjects because the match is on the WTF itself. There-
fore, in our case, WTFs are the most similar image regions.

In summary, most previous work has focused on either
detecting timestamps in photos or watermarks (station lo-
gos) in videos, but these approaches are too specialized and
thus not applicable to our problem. Moreover, to the best
of our knowledge, no one has addressed the problem of
detecting frames in photos, and we are not aware of any
previous paper that addresses the detection of watermarks,
timestamps, and frames with a single approach.

3. Method
Our goal is a detector that is general enough for all kinds

of watermarks, timestamps and frames. It needs to have
high accuracy since a single missed WTF can already cause
clusters of unrelated objects to be merged (Fig. 9), and it
needs to be fast so that it can be applied in large-scale set-
tings. Our detector is used as a post-processing step in im-



Figure 2. Workflow of the WTF detector. Top: WTF match, bottom: non-WTF match.

Figure 3. Similarity map computation based on photoconsistency.

age retrieval that decides whether an image match, i.e. a pair
of images related by a homography, is caused by a WTF. An
alternative would be to detect WTFs in every single image.
However, if an image with a WTF has matches due to its
actual content, this method would also discard them.

WTFs come in many shapes and sizes (Fig. 1), but af-
ter visually inspecting thousands of them, we found that the
following two assumptions generally hold. (i) Watermarks
and frames always have the exact same appearance, since
they are simply templates pasted onto the image. Time-
stamps are slightly more challenging since the background
is usually visible behind them and their appearance differs
depending on the time. (ii) All WTFs are typically close
to the border of the image. However, they may have vary-
ing positions and scales in each of the two matching im-
ages. For example, a professional photographer might al-
ways place her logo to not occlude the subject.

Based on the above assumptions, we now propose a
method to detect WTF matches. The basic steps of our de-
tector are as follows (Fig. 2): 1. Detect highly similar image
regions. 2. Compute a feature vector consisting of a spatial
histogram of the similar regions and some summary statis-
tics. 3. Classify the match as WTF or non-WTF. In this
section, we propose different choices for each of these three
steps and evaluate them in Sec. 4.

Detecting similar image regions. In the first step, we com-
pute an image similarity map that we later extract features
from. We propose two approaches for this: one based on
photoconsistency and one based on homography inliers.

The process of computing similarity maps based on pho-
toconsistency is shown in Fig. 3. Because WTFs can appear
at different positions in the image, we first warp image 2
onto image 1 using the homography between them. We then

compute pixel-wise photoconsistency scores based on nor-
malized cross-correlation (NCC). To isolate WTF regions,
we set all NCC values below a threshold θ to 0. Finally,
we use morphological opening to eliminate small regions
that likely do not belong to a WTF. Fig. 4 (3rd column)
shows example similarity maps computed with this method.
While it generally yields very precise results, we found that
uniform image regions with high NCC can often occur ran-
domly across the image. Moreover, this method is expen-
sive and requires the choice of three parameters, namely the
NCC window size r, the NCC threshold θ, and the size of
the structuring element for morphological opening.

Another way to find similar image regions exploits the
fact that the homography inliers, i.e. corresponding lo-
cal features that obey the homography transformation, are
available to our detector at no extra cost. Assuming that fea-
ture correspondences are a sufficient indication of the simi-
larity of their respective image regions, we create the simi-
larity map simply by forming the union of all inliers’ inter-
est regions in image 1. While this yields less precise sim-
ilarity maps than the photoconsistency method, it is much
faster and does not randomly fire in uniform regions. Fig. 4
(4th column) shows some example inlier similarity maps.

Spatial Histogram of Similar Regions. Based on these
similarity maps, we now compute feature vectors suitable
as input for a classifier. As mentioned above, we assume
that for WTFs, similar regions appear mainly at the im-
age borders, while for valid matches, similar regions appear
all over the image (Fig. 4). Therefore, we compute spatial
histograms of the similarity maps to detect WTFs. We in-
vestigate four histogram shapes (Fig. 5). dist2border
and dist2centre are histograms of the distance to the
image border and center, respectively. cake is an an-



Image 1 Image 2 Photoc. Inliers

Figure 4. Similarity maps computed with the photoconsistency and inlier methods.

dist2border dist2centre

cake dartboard

Figure 5. Spatial histogram shapes.

gular histogram, and dartboard is the combination of
dist2centre and cake.

We also experiment with additional attributes, namely
the mean photoconsistency and the coverage, i.e. the frac-
tion of active pixels in the similarity map. The resulting fea-
ture vector serves as input for AdaBoost with decision trees
as weak classifiers. This delivered performance superior to
both linear SVMs and SVMs with RBF kernels.

Two-way Matching. Sometimes the matching region be-
tween two images is at the border of one image but in the
middle of the other (See Fig. 7b). In such a case, depend-
ing on which of the images we choose for computing the
similarity map, the match can be falsely detected as a WTF.
To prevent this, we compute the similarity maps and his-
tograms in two directions; once by projecting image 2 onto
image 1, and once by projecting image 1 onto image 2. We
then only call the image pair a WTF if both feature vec-
tors are labeled as positive by the classifier. This way, we
enforce that the WTF regions are close to their learned po-
sitions in both images. This not only reduces the number of
false positives, but also doubles the amount of training data,
since each image pair now generates two training samples.

Integration into Image Retrieval and Clustering. In
visual-words-based image retrieval [27, 19], potential
matches of a query image are ranked w.r.t. their tf-idf score
and then verified by fitting a geometric transformation. Our
detector is simply used as a second verification step that re-
jects WTF matches. This integration directly benefits image
clustering approaches that are based on a matching graph.
This graph is built by performing image retrieval and link-
ing matching images by edges. By performing WTF detec-
tion after image retrieval, false-positive edges in the match-
ing graph can be avoided directly during graph construction.

4. Experiments and Results
We first give a detailed analysis of our method in a clas-

sification setting and then show how it can improve image
clustering results by filtering false matches.

Dataset and Ground Truth. We collected a realistic
dataset2 of 36,240 image matches for evaluating our WTF

2Available at http://www.vision.rwth-aachen.de/data

detector. Each image pair has a binary label: 90% of the
matches are correct, or non-WTF matches, and 10% are
WTF matches. The basis for this dataset is the PARIS500K
dataset [30], collected from Flickr and Panoramio, that con-
sists of 500k photos taken in the inner city of Paris. To
collect our WTF dataset, we first generated a large pool
of image matches in PARIS500K by performing a pair-
wise matching using standard image retrieval techniques
[18, 19, 27] and then mined this pool for WTF matches.

To perform the pairwise matching, we computed bags
of visual words [27] from the images by quantizing their
SIFT features [15] using a visual vocabulary of 1M vi-
sual words. We then constructed an inverted file index [19]
and queried it once with each image. We ranked query re-
sults by their tf-idf score and spatially verified the top-300
matches by establishing feature correspondences using the
2nd-nearest-neighbor criterion [15] and fitting a homogra-
phy using SCRAMSAC [25]. If an image pair had 15 or
more inliers w.r.t. the homography, we considered it a match
and added it to the pool along with its homography and in-
liers, which are required for the similarity map computation.

We then used four methods to mine WTF matches from
this pool. (i) We searched for users whose photos frequently
match among themselves. (ii) We searched for image pairs
where all inliers are in one of the four image corners. (iii)
We clustered the dataset using Iconoid Shift [31] and iden-
tified clusters containing multiple unrelated buildings, since
these are typically caused by WTF matches that create in-
valid edges in the matching graph. (iv) We manually went
through a large number of images from the dataset and col-
lected the matches of all images containing a WTF. We then
manually inspected all our collected image matches and fil-
tered out the remaining non-WTF matches. Because we
found that some users were responsible for a large num-
ber of matches in the pool, we limited the number of WTF
matches from the same user to 250 to avoid a bias towards
certain kinds of WTFs. The resulting set of 3,624 image
matches consists of 61% Watermarks, 23% Timestamps
and 16% Frames. By visual inspection of 1,000 random
matches from this set we found that that 99.6% of the WTFs
were near the image border, validating our initial assump-

http://www.vision.rwth-aachen.de/data


0 0.2 0.4 0.6 0.8 1

0.91

0.93

0.95

0.97

0.99

1

False Positive Rate

T
ru

e
 P

o
si

ti
v
e
 R

a
te

 

 

Inliers        (0.18 f99, 0.991 AUC)

PC. θ=0.75 (0.35 f99, 0.961 AUC)

PC. θ=0.85 (0.35 f99, 0.968 AUC)

PC. θ=0.95 (0.43 f99, 0.966 AUC)

(a)

0 0.2 0.4 0.6 0.8 1

0.91

0.93

0.95

0.97

0.99

1

False Positive Rate

T
ru

e
 P

o
si

ti
v
e
 R

a
te

 

 

Inliers               (0.18 f99, 0.991 AUC)

Inliers cov.        (0.16 f99, 0.991 AUC)

PC.                   (0.35 f99, 0.961 AUC)

PC. cov.            (0.34 f99, 0.967 AUC)

PC. mean          (0.24 f99, 0.987 AUC)

PC. cov.+mean  (0.23 f99, 0.988 AUC)

(b)

0 0.2 0.4 0.6 0.8 1

0.91

0.93

0.95

0.97

0.99

1

False Positive Rate

T
ru

e 
P

o
si

ti
v
e 

R
at

e

 

 

Inliers           (0.18 f99, 0.991 AUC)

Inliers 2−way (0.10 f99, 0.995 AUC)

PC.               (0.35 f99, 0.961 AUC)

PC. 2−way     (0.23 f99, 0.983 AUC)

(c)
Figure 6. Effect of different parameters on classification performance. (Note that the y-axis ranges from 0.9 to 1.0.) (a) Photoconsistency
vs. inlier similarity maps (using a dist2border histogram (Fig. 5) with 5 bins). (b) Effect of additional features. (using θ=0.75 for
photoconsistency) (c) Effect of two-way matching.

tion. The exception cases were semitransparent watermarks
placed in the middle of the image. We then added 32,616
non-WTF matches from our pool of matches, so the final
dataset has 10% WTF matches. For cross-validation, we
then split up the dataset into 5 folds, taking care that WTFs
from the same user are all in the same fold to avoid training
on the test data.

Evaluation Procedure. We now evaluate our method in a
binary classification setting using 5-fold cross-validation.
We plot receiver operator characteristic (ROC) curves by
vertical averaging, i.e. we average the true positive rates of
the five folds for each false positive rate. Additionally, we
consider the area under the ROC curve (AUC) and the false
positive rate at a true positive rate of 0.99, which we call f99.
This is motivated by our target application, image cluster-
ing. While the effect of a few missing matches is negligible
since an image cluster is usually very densely connected,
a single false-positive match caused by a WTF can already
result in the merging of two unrelated clusters (Fig. 9). Our
primary goal is therefore to reach high recall. We now ana-
lyze the different parameters and design choices introduced
in Sec. 3 and how they affect performance and efficiency.

Photoconsistency vs. Inliers. The first pipeline step is de-
tecting similar image regions. We compare the photocon-
sistency and inliers methods using different NCC thresholds
θ for photoconsistency (Fig. 6a). Surprisingly, inliers out-
performs photoconsistency by a large margin (0.18 f99 vs.
0.35 f99). The reason is that photoconsistency is much more
prone to false-positives, because high photoconsistency re-
gions are likely to occur by accident, e.g., in uniform re-
gions (Fig. 7a). Inliers does not have this problem, because
interest points are mostly detected in textured regions and
because SIFT matches are more discriminative.

Efficiency. The main performance difference lies in the
similarity map computation. The photoconsistency method
needs to compute the NCC by applying a sliding window
over both images and computing a dot product at each po-

sition. Let N be the number of pixels in the overlap of
the warped images and r be the window size, then NCC
computation requires O(N ∗ r2) operations. The inliers
method only needs to fill the interest regions of the inlier
features. Let s be the average diameter of an interest region
and R the number of interest regions, then the similarity
map computation takes O(R ∗ s2) operations. Since there
are much less interest points than pixels (R � N ), the in-
liers method is much faster. In our measurements, the av-
erage time to compute the feature vector for an image pair
is 1.5 seconds using photoconsistency and 0.15 seconds us-
ing inliers3. Therefore, inliers is highly preferable both in
terms of performance and efficiency.

Additional Features. The effect of the additional features
coverage and mean is shown in Fig. 6b. While coverage
has only a small effect on both methods, the mean strongly
increases the performance of the photoconsistency method.
The reason is that accidentally photoconsistent regions (yel-
low regions in Fig. 7a, bottom right) typically have lower
photoconsistency, which decreases the mean.

Two-way Matching yields a large performance improve-
ment (Fig. 6c). The f99 improves from 0.18 to 0.10 for in-
liers and from 0.35 to 0.23 for photoconsistency. This is be-
cause firstly, twice the amount of training data is available,
and secondly, image matches where the similar region is at
the center in one image, but at the border in the other are
filtered out by this method. In the examples in Fig. 7b, only
the left images were considered when not using two-way
matching, causing them to be falsely classified as WTFs.

Histogram Shapes. We investigate four spatial histogram
shapes (Fig. 5). As Fig. 8a shows, dist2centre per-
forms highest. Although dartboard with 5 distance and
16 angular steps achieves similar performance, it has 80
dimensions, whereas dist2centre only has 5 dimen-

3Timings were measured on a 2.7 GHz Intel Core i7 CPU and were
based on prototype Matlab implementations. Our open source library is a
faster C++ implementation of the inliers method.



(a) (b) (c)
Figure 7. (a) The inlier method can prevent errors in similarity map estimation. Top: WTF match. Middle: Closeup of WTF. Bottom
left: photoconsistency map with errors in homogeneous image regions (yellow). Bottom right: inlier map. (b) False-positive WTFs that
two-way matching prevents (similarity map overlaid in green). (c) Two unusual false-positive WTF detections in PARIS 500K.

2-way hist. f99 AUC
d2c 0.228 0.989

X d2c 0.184 0.993
d2b 0.355 0.961

X d2b 0.228 0.983

(a) Photoconsistency

2-way hist. f99 AUC
d2c 0.045 0.995

X d2c 0.034 0.998
d2b 0.183 0.991

X d2b 0.095 0.995

(b) Inliers
Table 1. Comparison of different detector settings.

sions. Fig. 8b shows the effect of the number of bins for
the dist2centre histogram and the inliers method. The
strong performance increase from 3 to 5 bins shows that
a certain spatial resolution is required to reliably detect
WTFs. However, more bins do not bring an advantage,
which allows us to keep feature dimensionality low.

Summary. Tab. 1 summarizes our results. For both photo-
consistency and inliers, dist2centrewith 2-way match-
ing performs highest. The best setup achieves 3.4% f99.

Comparison against Baselines. Since the task of detecting
watermarks, timestamps and frames has not been addressed
before and previous methods are not applicable to Internet
photos (Sec. 2), we compare against two simple methods
used in practice. The first is to use GPS tags to restrict
the candidate matches geographically [2, 22, 37], assuming
that images taken far apart cannot show the same object.
If they match anyway, it must be a false positive. Since
geotags are available for our images, we apply this method
by classifying all image pairs with a geographic distance
above a threshold t as WTFs. Fig. 8c shows the ROC curve
drawn by varying t, compared against our best perform-
ing setup. We found that the main reasons for the much
lower performance of this method are: (i) Inaccurate GPS
tags causing false-positive WTF detections. For example,
two pictures of a sculpture in a museum may have far-away
geotags due to bad GPS reception, causing the match to be
classified as a WTF. (ii) Although two images have close-by
geotags, they do not always show the same object. Hence,
matches between them can still be caused by a WTF. In our
experiments in [31] we found that the following heuristic,
combined with the GPS-based method, helped reduce WTF

matches: An image match is removed if at least 50% of its
inliers are in the top or bottom 10% of the image. While this
additional step drastically increases the tpr, its performance,
especially the f99, is still not comparable to our method.

Application to Clustering. We now demonstrate how our
detector can improve the results of image clustering and
thus benefit applications such as landmark recognition or
structure-from-motion. We use two datasets, PARIS 500K
[30] and OXFORD 105K [19]. For each dataset, we build
one baseline matching graph using standard image retrieval
and one using image retrieval with subsequent WTF re-
moval. We then cluster both graphs using Iconoid Shift
[31]. The clustering based on the baseline matching graph is
called clustering 1 and the clustering based on the matching
graph with WTF removal is called clustering 2. We now
compare these clusterings for both datasets. For WTF re-
moval, we use inlier similarity maps, dist2border his-
tograms with 5 bins and two-way matching. We selected
the classifier score threshold to an operating point of 0.99
tpr determined using cross-validation on the WTF dataset.

Results on Paris 500k. Clustering 1 of PARIS 500K has
14,254 clusters covering a total of 111,892 images. 87 clus-
ters, and in particular the three largest clusters, are affected
by WTFs. For example, the largest cluster (5,435 images)
contains the Eiffel Tower, the Louvre, Notre Dame, the
Arc de Triomphe, several paintings and sculptures, as well
as many non-landmark tourist photos such as portraits or
pictures of food. In clustering 2, 38 of these clusters are
completely removed since they only contained WTFs. Two
WTF clusters survived unharmed, but they contained only 2
and 3 images respectively. 39 clusters, covering 17,857 im-
ages, were split into a total of 317 clusters. Only 14 of them
still contained WTF matches, but all of these clusters were
smaller than 5 images. The remaining 303 clusters were
all pure, each containing only one object. Fig. 9 shows an
example of a successfully split cluster. 8 clusters from clus-
tering 1 contained only a small fraction of WTF images,
but were pure otherwise. In clustering 2, all WTFs were
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Figure 8. (a) Performance of different histogram shapes (using inliers and the respective best-performing bin counts). (b) Performance
of different histogram sizes. (c) Comparison with two baseline methods. The settings for our method are the best performing setup:
dist2centre, 5-bin, inliers, 2way. (Note that the y-axis is scaled differently in this plot, so the curves of the other methods are visible.)

Figure 9. Subset of a cluster successfully split by our algorithm. All images were initially in the same cluster due to WTF matches (red,
closeup on the right) that linked images of different buildings. The cluster was split into the three clusters denoted by the dashed rectangles.

removed from these clusters.

Due to false positives, 79 non-WTF clusters were re-
moved, but all of them were very small: 70 of them only
had size 2 and the largest had size 7. False positives that
are removed in larger clusters usually do not have any ef-
fect, since these clusters are densely connected. Most false
positive WTF detections are due to image pairs that have
matching features only at the border. This can happen, e.g.,
if there is extreme panning between the two photos such that
they have only very little overlap. Fig. 7c shows two rather
unusual cases. (Top: A planted facade resembling a frame.
Bottom: Two paintings with similar physical frames.)

Results on Oxford 105k. The OXFORD 105K dataset, used
to evaluate image clustering in [4, 5, 21], consists of 5k im-
ages of Oxford showing 11 landmarks, and 100k distractor
images collected from Flickr by random keyword searches.

Clustering 1 of OXFORD 105K has 6,225 clusters cover-
ing 17,599 images. Since the Oxford part of the dataset is
relatively clean of WTFs, none of the Oxford building clus-
ters were merged. We found that 7 clusters in clustering 1
were merged by WTFs, 8 contained only WTFs, and one
cluster contained some WTFs but was otherwise pure. In
clustering 2, 6 of the 7 merged clusters were successfully
split. In the remaining cluster, all photos had a common

background object that caused them to match. 7 of 8 clus-
ters containing only WTFs were removed. The missed clus-
ter contained 4 identical images with a frame, which were
not detected because they had inliers over the whole im-
age area. Finally, the cluster consisting partially of WTFs
was successfully cleaned of unrelated images (Fig. 10). 203
clusters were removed although they did not contain WTFs,
but all of them were only of size four or less.

Summary. We have shown that our method prevents the
formation of clusters whose images match only due to
WTFs and prevents clusters from being merged due to
WTFs. Though trained on PARIS 500K, our detector was
able to generalize to OXFORD 105K where it was just as
successful in removing WTFs.

5. Conclusion
We considered the so far neglected problem of detect-

ing watermarks, timestamps, and frames (WTFs) in Internet
photos. WTFs cause false-positive image matches that harm
image retrieval and image clustering applications. We pro-
posed a simple yet effective method to detect WTF matches
based on spatial histograms of similar image regions and
showed that it achieves high performance on a realistic
dataset and successfully fixes the problems that WTFs cause
in image clustering.



Figure 10. A cluster in the OXFORD 105K dataset that contains unrelated images due to false-positive matches caused by timestamps
(example on the right). The crossed-out images were removed by our detector, leaving only the relevant images.
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