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Abstract
In this paper, we propose a novel algorithm for auto-

matic landmark building discovery in large, unstructured
image collections. In contrast to other approaches which
aim at a hard clustering, we regard the task as a mode es-
timation problem. Our algorithm searches for local attrac-
tors in the image distribution that have a maximal mutual
homography overlap with the images in their neighborhood.
Those attractors correspond to central, iconic views of sin-
gle objects or buildings, which we efficiently extract using a
medoid shift search with a novel distance measure. We pro-
pose efficient algorithms for performing this search. Most
importantly, our approach performs only an efficient local
exploration of the matching graph that makes it applicable
for large-scale analysis of photo collections. We show ex-
perimental results validating our approach on a dataset of
500k images of the inner city of Paris.

1. Introduction
Community photo collections have become a valuable

source for large amounts of tourist photos, densely cover-
ing entire cities. In particular, they provide rich imagery
of the world’s landmark buildings, statues, monuments, and
paintings. Our goal in this work is to automatically discover
popular objects in such image collections and to find a rep-
resentative and iconic view for each of them. Additionally,
we aim at finding all images corresponding to those iconic
views in order to structure the image data. Such a group-
ing enables many interesting applications, such as scene
summarization [20], landmark recognition for image auto-
annotation and visual search [11, 25, 8, 2], and 3D building
reconstruction for use in virtual city models [12, 1, 10].

Several previous approaches have addressed this group-
ing task as a clustering problem [20, 16, 15, 12]. Similar
to [8], we argue that a hard clustering is however the wrong
task here, since there are many images that show multiple
objects or buildings of interest together. In a hard clustering,
those would be arbitrarily assigned to one of the clusters,
when instead they should be assigned to both. In contrast,
we propose to consider the task as a mode estimation prob-
lem. Instead of a hard partitioning into clusters, we aim at

Figure 1: Map of iconic images (iconoids) and their cluster sizes
discovered automatically by our algorithm in a set of 500k images
from Paris. Our approach is designed for finding central views of
a single object or building through efficient local exploration.

finding local attractors that summarize a number of images,
but whose influence areas may overlap.

Many criteria have been proposed for structuring photo
collections, including GPS tag proximity [8], global im-
age similarity [12], the number of local feature matches
[16, 15], or the number of shared 3D points of a reconstruc-
tion [20]. Our goal is to obtain a grouping that is defined
on a building or object level and that can be computed effi-
ciently by local exploration. That is, we want to only group
images that show the same building, facade, or object, and
we want to consider only images from the object’s immedi-
ate vicinity in order to make the grouping decision.

An interesting question lies in the task definition itself:
What properties should we aim for that make an image an
iconic view? Intuitively, the iconic image should be similar
to most other images in the cluster (the “likelihood” crite-
rion from [23]), but we additionally impose the constraint
that it should show the most central viewpoint on the ob-
ject from those sampled by the human photographers. Our
goal is therefore to find photos that have maximal mutual
overlap with other images (i.e., photos showing a similar
view should have low distance, while panning and zooming
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should be penalized). Therefore, distances based only on
feature-based similarity are unsuitable, since they have no
geometric interpretation. We instead propose a novel geo-
metric distance measure, the homography overlap distance,
and a corresponding mode search algorithm, called Iconoid
Shift, derived from medoid shift [19, 22]. Seeking to max-
imize the mutual overlap with a large number of images
in the neighborhood, this mode search procedure shifts the
kernel window to images which show the depicted struc-
ture from the most central (and therefore iconic) viewpoint
among their neighboring images, called iconoids, as visual-
ized in Fig. 1. Additionally, Iconoid Shift produces a soft
clustering of the image set by associating each image with
all iconoids showing the same scene. We present an efficient
linear-space algorithm to perform the medoid-shift search
on large image databases. In addition, we show how the
approach can be combined with Geometric min-Hash [6] to
efficiently select promising seed points for exploration.

Our novel view of the problem has several important ad-
vantages: (1) It draws direct parallels to the well-understood
problems of density estimation and mode search. This
makes it possible to draw upon the proven theoretical prop-
erties of mode search algorithms and their intuitive parame-
ters. In particular, we show that a hierarchical organization
of iconic views can be obtained by varying the bandwidth
of the kernel. (2) The iconoid kernel has a direct visual in-
terpretation and delivers good empirical results. We exper-
imentally demonstrate that both the selected iconic images
and their supporting image groups make intuitive sense. In
addition, we show that our procedure results in more cen-
tered iconic views than criteria based on the valence of
nodes in the matching graph [15, 8]. (3) Our approach per-
forms a local exploration of the matching graph. That is, we
do not need to precompute the full pairwise matching graph
(in contrast to [15, 1]), but our approach can be applied to
many seed images in parallel. This makes the approach at-
tractive for large-scale analysis of photo collections.

Related Work. A number of approaches have already been
proposed that try to find iconic summary images for ob-
ject categories [3], general visual concepts [17], or build-
ings [12, 20, 15, 4, 16]. This problem is closely related
to the one of finding canonical views of 3D objects (e.g.
[9]). In our approach, we follow the strategy of [20, 8] in
relying on a population of photographers to provide a distri-
bution over camera viewpoints and in searching for iconic
images as peaks of the distribution. Our approach however
differs from [20, 8] in several respects. We do not define im-
age similarity over the number of shared 2D or 3D points,
but over the size of the 2D inlier region of a homography
relating the images. This allows our approach to be spe-
cific to individual buildings, but also to exploit transitivity
to images of the same building for which there are no di-
rect feature correspondences. In addition, our algorithm

is optimized for efficient local exploration of large image
collections, while [20, 15] work on precomputed connected
components of the matching graph. Finally, [20] performs
a greedy optimization to obtain a hard clustering, while our
approach obtains stable results with a mode search.

The techniques we use for landmark building discovery
also set us apart from other approaches with similar goals.
[15, 8] apply spectral clustering on connected components
of the matching graph, which is computationally expensive
[24]. [16, 11] use agglomerative clustering on images in
the same geospatial grid cell instead, which results in hard
clusters, but does not find representative images. [5, 4] ap-
ply min-Hash together with query expansion in order to find
clusters of partially overlapping images. However, the ex-
tracted clusters are not restricted to individual objects or
buildings, but may extend to entire connected components
of the matching graph [24].

2. Iconoid Shift
To lay out the foundations of the Iconoid Shift algorithm,

we first give a brief review of visual word based image
retrieval and medoid shift. We then define the homogra-
phy overlap distance which enables applying mode search
to find popular views in image collections and propose an
efficient propagation scheme for the quick computation of
pairwise distances in an image graph. Finally, we introduce
the Iconoid Shift algorithm itself.

Problem Definition. We aim to find a subset of images that
each have locally maximal mutual overlap with their neigh-
boring images (the iconoids). Additionally, we are inter-
ested in each iconoid’s corona of supporting images, which
we call support set, that have non-zero overlap with it.

Visual Word based Image Retrieval. Our method uses
the vector space model for image retrieval [21, 14]. Im-
ages are represented as bags of vector-quantized SIFT [13]
features using a visual vocabulary size of 1M. Retrieval is
performed using an inverted file based voting scheme and
results are ranked by the cosine distance of their tf ∗ idf
vectors to the query. The top-k matches are verified by fit-
ting a homography using SCRAMSAC [18]. A match is
accepted if it has more than 15 inliers.

Medoid Shift Review. Medoid shift [19] is an iterative
mode search algorithm based on the classical mean shift [7].
Mean shift finds modes in a data set {xi} by searching for
local maxima in the kernel density

f(x) = c
∑
i

Φ(d(x,xi)). (1)

Here, Φ is a kernel, d a distance function, and c a normal-
ization constant, such that Φ integrates to 1. Mode search is
performed efficiently by iteratively shifting the kernel cen-
ter yk in the direction of the gradient:



yk+1 = arg min
y

{∑
i

d(y,xi)ϕ(d(yk,xi))

}
, (2)

where ϕ(x) is a kernel such that ϕ(x) = −Φ′(x), i.e. Φ
is the shadow of ϕ [7]. This minimization is iterated until
yk = yk+1. The initial point y0 is then associated with the
mode yk. Clustering is performed by applying this proce-
dure once to each point in a dataset.

In medoid shift, the only formal difference is that the
kernel center must always lie on a data point [19]:

yk+1 = arg min
y∈{xi}

{∑
i

d(y,xi)ϕ(d(yk,xi))

}
. (3)

The advantage of this small modification is the generaliza-
tion from Euclidean spaces to general metric spaces (e.g.,
fully connected graphs). This means the algorithm only re-
quires a distance measure to be defined between each pair of
data points. In the following, we introduce an overlap-based
distance measure for images.

Homography Overlap Distance. Since the modes we are
searching for are images having maximal overlap with their
neighborhood, we need a distance measure that rewards
similar views while penalizing view changes like panning
and zooming. To determine the overlap region between two
images i and j, we estimate a homography Hji that maps
from image i to j. We now define the overlap regions xij
and xji as the axis-aligned bounding boxes around the inlier
features of the homography. Here, xij is the bounding box
around the inlier features in image j and xji is the bounding
box around the inlier features in image i.

We then compute the relative size of the overlap regions
in both images and define the homography overlap distance
as one minus the minimum of these relative sizes:

dovl(i, j) = 1−min

{
||xji||
||Ri||

,
||xij ||
||Rj ||

}
. (4)

Here, ||Ri|| and ||Rj || denote the area of image i and j,
respectively.

Properties. The effect of this definition is visualized in
Fig. 2. If the images are identical (Fig. 2a) dovl = 0, since
both inlier bounding boxes fill the whole images. Now, if
we pan the view (Fig. 2b), the size of the overlap region de-
creases equally in both images and dovl increases. In the
case of zooming out (Fig. 2c) or in (Fig. 2d), the relative
size of the smaller overlap region determines the value of
dovl. As illustrated in Fig. 2d, this method sometimes un-
derestimates the overlap due to homogeneous image regions
where no interest points are present.

It is easy to verify that dovl is positive and symmetric.
However, due to the limited repeatability of feature detec-
tors and descriptors, the triangle inequality does not hold in
general. In the following, we propose a transitive extension
of dovl that fulfills the triangle inequality by construction.

100% 100%

dovl = 1−min(1.0, 1.0) = 0.0

(a) Identical images

50% 50%

dovl = 1−min(0.5, 0.5) = 0.5

(b) Panning

100% 60%

dovl = 1−min(1.0, 0.6) = 0.4

(c) Zooming out

20% 70%

dovl = 1−min(0.2, 0.7) = 0.8

(d) Zooming in (underestimation)

Figure 2: Illustration of the homography overlap distance.

i j

(a) Two possible definitions of the overlap regions.
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(b) Transitive homography overlap.
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(c) Homography overlap propagation along a path.

Figure 3: (a) Direct, (b,c) transitive homography overlap.

Transitive Homography Overlap Distance. To determine
local modes, medoid shift requires the pairwise distances
of all images within the kernel radius. However, comput-
ing these pairwise distances by direct feature matching (as
done, e.g., in [16]) is very costly. Instead, we represent the
local neighborhood by a tree and at first only compute dis-
tances along edges. Then, we infer the distances of all other
pairs using their connecting path in the tree.

A simple approach for this would be to multiply all ho-
mographies along the path and to use the inliers of this ho-
mography to determine the overlap region. However, our
experiments (Sec. 4) show that this method is not robust
due to the limited invariance of the interest point detectors
and descriptors and thus often underestimates the overlap.

We therefore propose a propagation scheme that is in-
dependent of feature matches and avoids the costly step of
determining the homography inliers. In the following, as-
sume there exists a direct correspondence between the im-
age pairs (i, j) and (j, k) and our goal is to infer the ho-
mography overlap distance of (i, k). As a simple example,
consider Figure 3b. We estimate the overlap regions xki



and xik (green regions in images i and k) by intersecting
xij with xkj (the magenta and blue regions in image j),
and projecting the intersected region into images i and k
using the known homographies. The homography overlap
distance can then be computed as in Eq. (4) without explic-
itly matching i and k. Likewise, we can easily compute the
homography from i to k as

Hki = HkjHji. (5)

In order for this scheme to work, we need to be able to
transform overlap regions between images. This is not pos-
sible when defining both overlap regions as axis-aligned
bounding boxes, as we did above. We therefore define only
one overlap region as an axis-aligned bounding box and the
other as its image w.r.t. the homography. As shown in Fig-
ure 3a, we have two choices for this. We choose the pair
of boxes that encloses the set of inliers better, i.e. the pair
whose sum of areas is smaller (the green boxes in Fig. 3a).
This makes the overlap regions consistent with the homog-
raphy, i.e.

xji = Hijxij and xij = Hjixji. (6)

To define this scheme formally, let x∩ y be the intersection
between two regions x and y. We then define the overlap
region of image i in image k as

xik := Hkj(xij ∩ xkj). (7)

Now, xki can either be computed analogously, or by back-
projecting xik:

xki = Hikxik (8)

By applying this scheme recursively, we can propagate
overlap regions along paths. As an example, consider a
path of four images (i, j, k, l) with correspondences only
between adjacent images (Fig. 3c). We can compute xil us-
ing Eq. (7) twice:

xil = Hlk(Hkj(xij ∩ xkj) ∩ xlk) (9)

Here, we intersect the magenta and blue regions in image
j, project the intersection to image k, yielding the green
region, which we intersect with the red region. Finally, we
project the resulting solid green region to image l to get xil.
By alternating intersection and projection in this way, we
can determine the transitive homography overlap distance
between any pair of images that are connected through a
path of pairwise correspondences.

Using this procedure, the triangle inequality is fulfilled,
because the minimum spanning tree fulfills it by definition
and all remaining distances are inferred using this propaga-
tion scheme which fulfills it by construction. In practice,
violations only occur in cases where the polygon intersec-
tion algorithm fails due to degenerated polygons. Those

(a) (b) (c)

Figure 4: Steps of the Iconoid Shift procedure. (a) Exploration of
the minimum spanning tree. Dashed boxes denote images outside
the current kernel window, (b) Computation of pairwise distances,
(c) Shifting the medoid.

Algorithm 1 Iconoid Shift.
// Given a collection C of tourist photos
// Compute the set of O iconoids and their support sets
S ← draw a set of seed images from C
for s ∈ S do

y0 ← ∅, y1 ← s, k ← 1
while yk−1 6= yk do

Build minimum spanning tree T starting from yk

Complete missing edges in T by propagating overlaps
yk+1 ← the image in T minimizing Eq. (3)
k ← k + 1

Add (yk, T ) to O

cases are so rare that they do not have any effect on the al-
gorithm’s convergence and can easily be filtered out.

Hinge Kernel. Having introduced our distance function on
images, we define the shadow kernel Φ as a hinge function
that is 0 for all distances above a threshold β. The kernel
ϕ(d) = −Φ′(d) then becomes a piecewise constant func-
tion that cuts off all distances greater than β:

Φ(d) = (1− d

β
) if d < β , 0 otherwise (10)

ϕ(d) =
1

β
if d < β , 0 otherwise (11)

Iconoid Shift. Now, we have all the components that are
needed to define the Iconoid Shift procedure. The algorithm
follows the principle of medoid shift, but incorporates some
modifications to make it applicable to our problem.

Starting from an initial center image, we construct a min-
imum spanning tree of images overlapping with it by lo-
cally exploring the neighborhood of the central image us-
ing recursive image retrieval (Fig. 4a). Matches are verified
by computing their homography overlap distance (Eq. (4))
with the root node. For the children of the root, this is done
directly (Fig. 3a). For nodes further away, the overlap is
propagated transitively (Fig. 3c). In the second step, we
compute the pairwise distances between all images in the
graph (Fig. 4b). This can be performed very efficiently (cf .
Sec. 3) by again exploiting the transitive definition of the
homography overlap distance (Fig. 3c). Finally, we com-
pute the next medoid (Fig. 4c) using the standard medoid



shift minimization (Eq. (3)) and iterate this procedure un-
til a convergence point (the iconoid) is reached. This mode
search is performed for a previously selected group of seed
images and the set of resulting iconoids and their minimum
spanning trees is returned. The overlapping clustering is
then given by the images contained in the minimum span-
ning trees. The full algorithm is shown in Alg. 1. Note that
it can easily be parallelized by distributing the mode search
for different seeds to multiple threads or compute nodes.

The algorithm’s steps have an intuitive interpretation:
Starting with a seed image, we explore the set of images
overlapping with it and compute their pairwise distances. In
the medoid shift step, we compute weighted sums of over-
lap distances (Eq. (3)) which rate how well each image rep-
resents all other images in the neighborhood. The best rep-
resentative is then chosen as the new iconoid, which tends
to be the most central view on an object (see Fig. 6).

In contrast to medoid shift, our approach produces an
overlapping clustering, since the clusters are the iconoid in-
fluence areas. Also note that unlike, e.g., [15, 1] we do not
compute the full matching graph but only the local neigh-
borhoods of the points along the convergence paths.

3. Efficient Implementation
We now introduce efficient algorithms for both the ex-

ploration and the distance computation steps of Iconoid
Shift. The proposed exploration procedure builds a mini-
mum spanning tree of images overlapping with a central im-
age, which enables an efficient implementation of the pair-
wise distance computation by homography overlap prop-
agation (HOP). In particular, by interleaving the distance
computation and medoid shift minimization steps, the mem-
ory requirements of our algorithm are linear in the number
of images within the kernel window.

Local Exploration and Minimum Spanning Tree Con-
struction. The exploration procedure works by querying
an image retrieval system (Sec. 2) with the root node r to
obtain potentially matching images. Each match i is ver-
ified by computing the homography overlap distance with
the root node dovl(i, r). If this distance is within the ker-
nel radius, i.e. ϕ(dovl(i, r)) > 0, the match is accepted and
added to the graph. This procedure is executed recursively,
building up a minimum spanning tree in a breadth-first man-
ner (Fig. 4a). In order to efficiently compute the homogra-
phy overlap distances with the root node, each node i stores
its overlap region with the root xri. After a set of potential
matches has been retrieved, their homography overlap dis-
tances to the root can then efficiently be computed by prop-
agating the overlap region of the query node (Eq. (7)). This
way, only O(N) propagation steps have to be performed,
where N is the number of images within the kernel radius.

Homography Overlap Propagation (HOP). Having con-
structed the minimum spanning tree, we now compute the

(a) (b)

Figure 5: Homography overlap propagation. (a) The lowest com-
mon parent i propagates its overlap region to its subtree. (b) Dis-
tances between nodes in different subtrees are propagated via their
lowest common parent i.

Algorithm 2 Homography Overlap Propagation (HOP).
// Given a minimum spanning tree T with root r
// Compute the medoid m
var {Di} // Sums of weighted distances for all images i
Di ← 0 for all images i in T
for all images i in T pre-compute ϕ(dovl(r, i)) (Eq. (11))
for all images i in T traversed breadth-first starting at r do

// Step 1: Propagate root overlap (Fig. 5a)
for all images j under i traversed breadth-first do

Compute Hij , xij , xji by recursive propagation (Eq. (7))
Dj ← Dj + dovl(i, j)ϕ(dovl(r, i)) (Eq. (3))
Di ← Di + dovl(i, j)ϕ(dovl(r, j)) (Eq. (3))

// Step 2: Compute pairwise distances (Fig. 5b)
for all image pairs (m,n) in different subtrees of i do

Dm ← Dm + dovl(m,n)ϕ(dovl(r, n)) (Eq. (3))
Dn ← Dn + dovl(m,n)ϕ(dovl(r,m)) (Eq. (3))

m← argminm{Dm}

distances between all pairs of nodes (Fig. 4b) and deter-
mine the medoid using Eq. (3). A naive implementation of
this step would require runtime and storage cost in O(N2)
which quickly becomes infeasible for large image sets. In-
stead, we propose an efficient divide-and-conquer algorithm
that requires only linear space.

Our algorithm exploits the transitive homography over-
lap distance to propagate overlaps in the minimum spanning
tree. The central idea is that for two images in different sub-
trees, propagation always goes through the lowest common
parent. The overlap with this parent can be pre-computed
and re-used for all pairs of images below it.

For each lowest common parent i, we proceed in two
steps: First, we propagate the homography overlap of i to
all nodes j in its subtree (Fig. 5a). Then, we use the transi-
tive propagation scheme (Eq. (7)) to compute the distances
between all nodes n and m that have the lowest common
parent i. The full algorithm is given in Alg. 2.

This algorithm has O(N) memory complexity in the
size of the tree, because we directly accumulate the kernel-
weighted sums of distances (Eq. (2)) instead of storing all
N2/2 pairwise distances and computing the weighted sums
in a separate step. The time complexity of this algorithm is
O(N2) in the tree size. Each overlap propagation enables us
to compute the homography overlap distance between two
nodes. There are N propagation targets and N lowest com-
mon parents overall. Thus, O(N2) top-down propagation
steps are performed. The number of pairwise distance cal-



culations in different subtrees is also O(N2), because each
distance calculation is done for a different pair of nodes.
In order to increase the efficiency further, we propose the
following speedups.

Tree Re-use. We can avoid repeating retrieval and prop-
agation steps by memorizing the images within the kernel
window, including the border images (blue dashed boxes in
Fig. 4c). After shifting the medoid, we re-build the mini-
mum spanning tree re-using previously determined homo-
graphies and overlap regions. In general, it will be neces-
sary to expand the tree beyond the border, but the known
nodes can be processed at much lower cost.

Basin of Attraction. A common speedup used in mean
shift is to associate the basin of attraction, i.e. the points
within a narrow radius around the mode, with the mode di-
rectly instead of performing an extra mode search for them.
This is feasible because a mode search from a point very
close to a mode will likely converge to the same mode. This
speedup can be used in Iconoid Shift by removing the basin
of attraction images of each iconoid from the seed set.

4. Experimental Results
We now present results achieved applying our approach

on a challenging large-scale dataset. We show that our def-
inition of iconoids suits the notion of iconic images and
demonstrate that Iconoid Shift can automatically discover
meaningful object clusters in a fully unsupervised way. Fur-
thermore, we show how Iconoid Shift can be used to per-
form hierarchical scene summarization.

Dataset. We use a dataset of 500k images of Paris [24]
collected from Flickr and Panoramio. The images were re-
trieved using a geographic bounding box query. As a result,
they have a “natural” distribution as opposed to images re-
trieved using keyword queries.

Min-Hash Seed Generation. Chum et al. [4] propose
to cluster touristic image collections by iterated query ex-
pansion [6] using min-Hash collisions as seeds from which
clusters are grown. We use their approach to select the seed
set of images S (Alg. 1), since it has been shown to yield
good starting points for growing image clusters [24].

Does Iconoid Shift actually select iconic views?
Our first question is if our definition of iconoids fits the in-
tuitive concept of an iconic image. Fig. 6 shows four typical
runs of Iconoid Shift starting with views of landmark build-
ings taken at oblique angles or large distances (left column).
Each run took three iterations to converge to an iconoid
(right column), which typically show a frontal, centered and
full view. Starting with a given view of a landmark building,
Iconoid Shift tends to tilt, zoom and orbit around the object
until it reaches a view that is favored by human photogra-
phers. As an interesting side effect, it automatically selects
whether a portrait or landscape format photo fits the object

Figure 6: Examples of Iconoid Shift sequences with the support
set sizes at each step.

Figure 7: Iconoid Shift runs converging in the same iconoid.

Figure 8: Comparison of iconoids (top) and [8] and [15]’s spec-
tral clustering approaches, selecting the images with maximum
(weighted) valence. Numbers denote the number of images as-
sociated with the iconic by membership of the support set (top)
and adjacency in the matching graph (middle and bottom).

better, because a photo that is completely filled by the object
has higher mutual overlap with its neighbors. The support
set size (given below the images) is often higher for more
“iconic” views, because the more typical a view is the more
images overlap with it. However, since we optimize the mu-
tual overlap and not the number of images in the support set,
this number does not increase consistently.

Fig. 7 shows a number of Iconoid Shift runs starting from
different views of the Eiffel Tower (leaves) that each con-
verge in the same iconoid (root). The path from a leaf to the
root shows the iterations of Iconoid Shift.

How does it compare to feature-based iconic selection?
A very popular approach for finding iconic images is to
select the images with the highest feature-based similar-
ity in their neighborhood [2, 8, 12, 15, 25]. We compare



(a) (b)
Figure 9: (a) Part of the minimum spanning tree of Les Invalides
(921 images) with its iconoid (green border) at the root. (b) Over-
lapping clusters (represented by their iconoids) of the Eiffel Tower.

our work with two approaches: [8] build the full match-
ing graph, weight each edge by the number of homogra-
phy inliers, segment it using spectral clustering and select
the image with the highest weighted valence in each clus-
ter. [15] additionally merges the spectral clusters showing
the same building by trying to propagate a homography be-
tween their images with maximum unweighted valence. A
qualitative comparison is given in Fig. 8. In general, Iconoid
Shift tends to select more central views than the (weighted)
valence criteria, which are based only on feature similarity
and does not have a geometric interpretation. The numbers
show the neighborhood sizes w.r.t. the respective neighbor-
hood criterion (membership in the support set vs. adjacency
in the matching graph). We define neighborhood using the
geometric overlap that is propagated independently of fea-
ture matches and thus discover more images of the same
object than a plain feature-based matching.

How are the minimum spanning trees structured?
Iconoid Shift returns both the iconoid and its minimum
spanning tree (Fig. 9a). Since this tree was constructed
by recursive image retrieval, its branch structure reveals
the structure of the iconoid’s neighborhood. For example,
branches may contain specific views of the object or depict
the object in certain lighting conditions. This has interest-
ing applications such as navigating the scene of an iconoid
by following paths in the tree.

Is the simple propagation scheme insufficient? In or-
der to verify that the transitive overlap propagation scheme
(Fig. 3b) is necessary to fully explore an iconoid’s neigh-
borhood, we compare it to the simple scheme (Sec. 2) that
multiplies homographies along the path and determines the
inlying feature matches. We use a smaller dataset of 100k
images of Paris and initialize Iconoid Shift with a set of 25
seed images generated by Geometric min-Hash. The sim-
ple scheme discovered 17 clusters with an average size of
137.9, while the transitive scheme discovered 16 clusters
with an average size of 230.8. Visual inspection showed
that in general, the images discovered by the simple method
cover a lower variety of viewpoints, because it relies on di-
rect feature matches and thus on the invariance of the inter-

(a) Grand Palais Entrance (b) La Made-
laine

(c) Notre Dame

Figure 10: 3D reconstructions from iconoid support sets.

est point descriptor and detector, while the transitive scheme
propagates the overlap region independently of direct fea-
ture matches. Furthermore, computation using the simple
scheme took 24x longer than the transitive scheme, because
direct overlap computations are more costly and require lo-
cal features to be loaded from disk.

Large-Scale Evaluation. In order to show that Iconoid
Shift can automatically identify the tourist hotspots of an
entire city, we apply it to the full 500k images of Paris.
We generate a seed group S with Geometric min-Hash [5]
using 5 min-Hash sketches of size 2, yielding 10,487 col-
liding images. We remove duplicates by applying a tf*idf
threshold and filter out multiple seeds of the same object by
building a pairwise matching graph of the min-Hash seeds,
identifying its connected components and choosing one rep-
resentative for each. Since we only build such components
on the seeds, this step is inexpensive. We use this reduced
set of 477 images as the seed set. We use the hinge kernel
(Eq. 11) and set β = 0.9, i.e. all images in the support set
of a medoid need to have at least 10% overlap with it.

Iconoid Shift identified 349 iconoids with a mean sup-
port set size of 627, covering a total of 76,787 photos. Due
to the lack of a suitable ground truth, we cannot provide
precision and recall statistics, but by visual inspection we
did not find any false positives in the support sets except for
those caused by timestamps, borders and logos that some
users have added to their photos. Fig. 1 shows a map of the
discovered iconoid support sets and some example iconoids
of varying types and support set sizes. The top landmarks
are the Eiffel Tower (7 iconoids covering 16,342 images),
Notre Dame (4 iconoids covering 13,369 images) and the
Arc the Triomphe (4 iconoids covering 7,764 images).

Because landmark buildings typically have several pop-
ular photo taking spots, Iconoid Shift often discovers multi-
ple iconoids of the same building or object. These can easily
be merged, e.g. for reconstructing buildings in 3D (Fig. 10),
since their clusters typically overlap. An example is given
in Fig. 9b. In contrast to a hard clustering on a landmark
level, Iconoid Shift produces a much richer structure: For
each landmark, we get a set of popular views and their rela-
tionships, as well as a fine-grained tree structure of different
aspects of the photographed scenes (see above).



Figure 11: Hierarchical scene summarization by varying the kernel bandwidth. Each row shows the iconoids for a particular bandwidth.

Scene Summarization. When decreasing the kernel band-
width, mean shift converges to smaller, more local modes.
Similarly, in Iconoid Shift, a smaller kernel bandwidth usu-
ally leads to smaller, less important iconic images, such as
certain details of a facade or entrance. Increasing bandwidth
shifts the iconoids to more global iconic views. Fig. 11
shows a hierarchical summary created this way. Each row
shows the set of iconoids for a given kernel bandwidth β.

5. Conclusion
In this paper, we proposed a novel algorithm for discov-

ering popular views of landmark buildings and other objects
in image collections. Our approach considers the task as a
mode estimation problem, which is solved by applying a
medoid shift search with our newly proposed homography
overlap distance. Our experiments have shown that our ap-
proach discovers meaningful iconoic images and produces
an overlapping cluster structure that gives rise to many in-
teresting applications.
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