
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Informatik 8 (Computer Vision)
Fakultät für Mathematik, Informatik und Naturwissenschaften

Prof. Dr. Bastian Leibe

Master Thesis

Keyframe-based Visual-Inertial SLAM With
Relocalization Using Stereo Cameras

vorgelegt von

Anton Kasyanov
Matrikelnummer: 351011

September 2016

Erstgutachter: Prof. Dr. Bastian Leibe
Zweitgutachter: Prof. Dr. Leif Kobbelt

Angeleitet von: Dr. Jörg Stückler, M.Sc. Francis Engelmann

Eidesstattliche Versicherung

Anton Kasyanov 351011
Name Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem
Titel

Keyframe-based Visual-Inertial SLAM With Relocalization Using
Stereo Cameras

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit
zusätzlich auf einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche
und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in gleicher
oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Aachen, September 2016
Ort, Datum Unterschrift

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zustständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften
des § 158 Abs. 2 und 3 gelten dementsprechend.

Die vorstehende Belehrung habe ich zur Kentnis genommen:

Aachen, September 2016
Ort, Datum Unterschrift

iii

Contents

1 Introduction 1
1.1 Thesis structure . 2

2 Related work 3

3 Preliminaries 5
3.1 Simultaneous Localization and Mapping 5

3.1.1 Introduction . 5
3.1.2 Graph Formulation . 6

3.2 OKVIS . 10
3.2.1 Introduction . 10
3.2.2 Notation . 10
3.2.3 Keyframes and marginalization 12

3.3 Image similarity . 13
3.3.1 FAB-MAP 2.0 . 14
3.3.2 DBoW2 . 15

4 Keyframe-based Visual-Inertial SLAM 19
4.1 SLAM . 19

4.1.1 Motivation . 19
4.2 Loop closures . 20

4.2.1 Graph optimization . 20
4.2.2 Algorithm . 21

4.3 Relocalization . 23
4.3.1 Motivation . 23
4.3.2 Algorithm . 24

5 Implementation 27
5.1 Hardware . 27
5.2 Calibration . 29
5.3 Synchronization . 30
5.4 Integration with OKVIS . 32
5.5 Output . 34

5.5.1 File formats . 35
5.5.2 Visualization . 35

v

Contents Contents

5.6 Software documentation . 36
5.6.1 Installation . 36
5.6.2 Drivers . 37
5.6.3 Starting . 37
5.6.4 Recording . 38
5.6.5 Configuration . 38
5.6.6 Running OKVIS . 39
5.6.7 Running SLAM . 39
5.6.8 Real-time SLAM . 40

5.7 Discussion . 40

6 Evaluation 41
6.1 DBoW2 vs. FAB-MAP2.0 . 41
6.2 EuRoC MAV dataset . 42

6.2.1 General performance . 42
6.2.2 Relocalization . 44
6.2.3 3D loops closure evaluation 49

6.3 Our dataset . 50
6.3.1 Overview . 51
6.3.2 E1 . 52
6.3.3 E2 . 53
6.3.4 E3 . 53
6.3.5 E4 . 54
6.3.6 E5 . 55
6.3.7 E6 . 57

6.4 Discussion . 58

7 Conclusion 63
7.1 Discussion . 64
7.2 Future work . 64

Bibliography 67

vi

1
Introduction

Combining the information from visual and inertial sensors had become popular
in robotics in recent years, due to the fact that it can be used to accurately es-
timate the visual odometry or perform Simultaneous Localization And Mapping
(SLAM) [LLB+15] [MTK+02] [MR07a] [Dav03]. However, most systems imple-
ment just visual odometry, leaving out localization and mapping. Such systems
are only locally consistent and localize the camera only within a small limited
time frame. On the other hand, robot navigation usually requires a global map to
be built with the further possibility to localize the agent with absolute reference.
Other applications where good localization is required include Virtual Reality and
Augmented Reality. Storing the map with low space requirements and precise
relocalization within this map is an area of ongoing scientific research, including
this thesis. In order to build a SLAM system, we are going to use the existing
visual odometry layer OKVIS [LLB+15], and extend it with an additional layer
for loop closure detection, map optimization and further relocalization.

OKVIS is implemented such that it can work with a single or multiple cameras.
We are going to use the stereo pair of cameras (Manta G-046, operating at 20
FPS and 780 x 580 resolution) to get better SLAM precision compared to a
monocular systems. Furthermore, an industry-level Xsens MTi-G IMU is used
in the setup, it provides all the needed inertial information at a decent update
rate (200 Hz). These devices will be assembled into a single setup and calibrated.
Good calibration is vital for odometry, so it will be an important part of the
implementation process.

From the technical point of view, both OKVIS and our SLAM layer are going
to be composed into a single Robot Operation System (ROS) node for ease of
usage, while different library parts are actually going to run in parallel to achieve
the best performance. OKVIS is real-time capable so we will try to keep this
and make SLAM real-time capable too. Camera images are going to be first
described by OKVIS and then passed to SLAM. Similar images will be matched
by DBoW2 [GLT12] and then, the relative transformation will be calculated by
RANSAC 3D-2D estimation [KF14]. Such transformations will result in addi-

1

Chapter 1. Introduction 1.1. Thesis structure

tional constraints in the pose graph leading to loop closures. The pose graph will
be optimized globally with respect to constraints between keyframes, including
the ones introduced by loop closure detection. Graph optimization will improve
the accuracy in pose estimation. The estimation improvement will be demon-
strated in the Evaluation chapter.

After revisiting the same location, even with loop closure and graph optimiza-
tion, OKVIS will produce redundant keyframes containing the landmarks that
were already mapped. Therefore, a clever management of the map and stored
keyframes will be performed.

Relocalization is also going to be an important part of the thesis. The pro-
cessed sequence can be saved as a map on disk. This map can further be reused
for relocalization in the world frame during subsequent runs. For example, the
home-cleaning robots use the variation of this technology to navigate indoors and
remember the map during every run.

The key contribution include:

• SLAM layer - use loop closures to perform global trajectory optimization.

• Relocalization - find camera pose in the reference frame of the saved map.

• Continued SLAM in the old map - combine both maps images and
trajectories after relocalization.

• Hardware setup - assemble and calibrate to perform our own experiments.

1.1 Thesis structure

In Chapter 2 we are going to briefly overview existing visual-inertial odometry ap-
proaches. In Chapter 3, we have put the explanation and overview of the methods
that are used throughout the thesis including OKVIS, FAB-MAP, DBOW2, as
well as a general SLAM problem overview. Chapter 4 explains the algorithm that
was developed in the thesis to perform Keyframe-based Visual-Inertial SLAM.
Schemes and plots are included to help the reader better understand the ap-
proach. Furthermore, in Chapter 5 we describe the actual implementation of the
algorithm. The hardware setup is described as well as the software structure.
We have included the software documentation, so our work can be further reused
by other students. Finally, in Chapter 6 we evaluate our approach using both
EuRoC MAV dataset [BNG+16] and the sequences that were recorded with our
own hardware setup.

2

2
Related work

Many recent SLAM approaches contain two layers. In first layer, the camera
position is estimated locally using keyframes. In the second SLAM layer, the
global constraints are utilized to optimize the trajectory globally and improve
the estimation. Two examples of such approach are ORB-SLAM [MAMT15] and
LSD-SLAM [ESC14].

ORB-SLAM was presented in 2015 by Raul Mur-Artal et al. This is a feature-
based monocular SLAM that can deliver a real-time performance. It uses bundle
adjustment and survival of the fittest approach to build a map. ORB-SLAM
features include loop closure detection and relocalization. In ORB-SLAM a simple
approach is used for loop closure detection - the similarity between bag-of-words
representations. In contrast, LSD-SLAM by Jakob Engel et al. successfully uses
a direct (feature-less) SLAM algorithm for a monocular system. Similar methods
use image retrieval techniques like DBoW2 [GLT12] and FAB-MAP 2.0 [CN11].

Authors of FAB-MAP 2.0 show that a probabilistic framework can be used to
detect the similarity between images in order to detect when the same place is re-
visited. However, we have also studied an alternative approach DBoW2 [GLT12],
which is another algorithm for visual place recognition that was introduced in
2012 by Galvez-López and Juan D. Tardos. It is based on bag of words model
(like FabMap) however due to novelties, the computation speed is much faster
then other approaches. These methods can build and query a map to find similar
images. We evaluate both approaches in this thesis and pick DBoW2 to use in
our SLAM system.

Apart from using visual measurement, various approaches add inertial measure-
ment to improve the estimation. However, most of them use filtering or sliding
window approaches that provide only locally consistent estimations. This leads to
drift accumulating on a global map scale. State-of-art approaches use tight cou-
pling for visual and inertial measurements [MR07a,LLB+15,UESC16,FCDS15].

In “Keyframe-based visual–inertial odometry using nonlinear optimization”
[LLB+15] Leutenegger et al. formulate the problem of non-linear optimiza-
tion with respect to camera and IMU constraints between frames. This is a

3

Chapter 2. Related work

big difference compared to many visual odometry methods that use filtering ap-
proaches. The optimization window includes only few recent frames. Old frames
and keyframes are marginalized out to keep the problem small. This method
also detects 3D landmarks and uses them to improve pose estimation. A similar
approach is “Direct Visual-Inertial Odometry with Stereo Cameras” by Usenko
et al. [UESC16]. The authors propose to use the minimization of the combined
photometric and inertial energy functional to simultaneously estimate camera
pose, velocity and IMU biases. Moreover, instead of using manually designed
keypoints, geometry is estimated in the form of semi-dense depth maps.

Apart from traditional Bayesian approaches, there are some algorithms based
on deep neural networks. For example PoseNet [KGC15] allows for relocalization
within a known location based only on a single image. However, this approach
is not flexible and does not generalize to unseen locations. On the other hand,
RGB-D approaches [SGZ+13,GSCI15] use machine learning techniques to detect
loop closures and to estimate camera pose.

The problem of visual localization usually includes the process of offline map
building and processing [LSCU12, VH12, MSUK14, LSB+15]. For example, ap-
proach by Lim [LSCU12] builds an offline map using structure-from-motion. The
resulting map consists of 3D interest points. During localization phase, the key-
points are detected in the camera image and their descriptors are matched to
the map points. The relative pose is computed using RANSAC 3D-2D matches
(e.g. [KF14]). In another approach by Middelberg et al. [MSUK14], the local
matching is happening on the mobile device, while the global alignment happens
on the remote server.

In this thesis we build the visual-inertial SLAM system that features an online
relocalization and mapping in the reference map.

4

3
Preliminaries

3.1 Simultaneous Localization and Mapping

3.1.1 Introduction

The problem of Simultaneous Localization and Mapping arises when the robot
doesn’t know its position and it doesn’t have a map of the surroundings. Only the
measurements z1:t and controls u1:t are available. So SLAM solves both problems
simultaneously: building a map and localizing within this map.
There are two forms of SLAM from a probabilistic point of view: online and
full [TBF05]. Online SLAM estimates the posterior over the momentary pose
along with the map:

p(xt,m|z1:t, u1:t) (3.1)

Here xt is the pose at a time t, m represents a map, z1:t are measurements
over time and u1:t are controls (see Figure 3.1). This form of SLAM is called
online, because it estimates variables at exactly time t. Most of the algorithms
to solve online SLAM are incremental, i.e. they drop past data once it has been
processed.

In the full SLAM form, the posterior is calculated over the full path x1:t along
with a map, instead of just using the last pose xt (see Figure 3.2). The proba-
bilistic formulation of the full form is:

p(x1:t,m|z1:t, u1:t) (3.2)

with the only difference of using x1:t instead of xt like in online form. It can
be shown, that the online SLAM form is the result of integrating out past poses
from the full SLAM:

p(xt,m|z1:t, u1:t) =

∫
...

∫
p(x1:t,m|z1:t, u1:t)dx1dx2...dxt−1 (3.3)

5

Chapter 3. Preliminaries 3.1. Simultaneous Localization and Mapping

xt−1 xt

ut−1 ut

zt−1 zt

m

Figure 3.1: Graphical model of online SLAM that uses only current position.

xt−1 xt xt+1

ut−1 ut ut+1

zt−1 zt zt+1

m

Figure 3.2: Graphical model of full SLAM that uses the full path.

In further subsection we are going to focus on the full SLAM problem. Another
characteristic of SLAM is the nature of the estimation problem. SLAM can be
viewed as a combination of continuous and discrete components. The continuous
component is related to the robot pose estimates and the location of the map
landmarks. The discrete component shows the correspondence of the landmarks.
When the landmark is detected it should be classified if it is the repeated detection
of the same object or it is a new object that was never seen before. It can be
useful to make the existence of correspondence variables explicit.

3.1.2 Graph Formulation

The full SLAM problem can be represented as a sparse graph. Such a graph
results in a sum of non-linear constraints. Optimization of the set of constraints
leads to the maximum likelihood map and a set of robot poses. An example of
such a graph can be seen in Figure 3.3. There are five poses x0, ...,x4 and two
map features m1,m2. Solid lines are motion edges that link subsequent poses.
Dashed lines are measurement edges that link poses to measured features.

6

3.1. Simultaneous Localization and Mapping Chapter 3. Preliminaries

x0 x1 x2

x3x4

m2m1

Figure 3.3: Example of the sparse graph SLAM formulation. xt represent poses
and mj represent map features. Solid lines link poses and dashed lines
link poses with map features.

To build the graph, let’s assume we have a set of measurements z1:t and a set
of controls u1:t. The nodes of the graph are robot poses x0:t and map features
mj. Edges between the nodes represent soft constraints in the graph. The con-
straints are equivalent to entries in an information matrix (denoted as Ω) and an
information vector (denoted as ξ). Adding an edge to the graph results in local
update of Ω and ξ.
The motion constraint between poses xt−1 and xt is formulated as:

[xt − g(ut,xt−1)]TR−1
t [xt − g(ut,xt−1)] (3.4)

where ut provides an information between relative pose between time t−1 and
t, g is a kinematic motion model and Rt is the covariance matrix of the motion
nose.
The measurement constraint between the pose xt and map feature mj is formu-
lated as:

[zit − h(xt,mj)]
TQ−1

t [zit − h(xt,mj)] (3.5)

where h is a measurement function and Qt is the covariance of the measurement
noise.
Having all constraints in place, we can form the target function J :

J = xT
0 Ω0x0 +

∑
t

[xt − g(ut,xt−1)]TR−1
t [xt − g(ut,xt−1)]

+
∑
t

[zit − h(xt,mj)]
TQ−1

t [zit − h(xt,mj)]
(3.6)

Minimizing J leads to the most likely map and the most likely robot path.
Note, the xT

0 Ω0x0 term - anchoring constraint that initializes the first robot post
at (0, 0, 0).
An example of building an information matrix is shown in Figure 3.4. It can be
seen, that off-diagonal elements are all zeros with two exceptions:

7

Chapter 3. Preliminaries 3.1. Simultaneous Localization and Mapping

• Between any consecutive poses xt−1 and xt there will be a non-zero element
representing the motion link.

• Between map feature mj and pose xt if mj was observed from position xt.

It means that the information matrix is also sparse and only a linear (in terms
of graph nodes) number of elements are non-zeros.

8

3.1. Simultaneous Localization and Mapping Chapter 3. Preliminaries

x0 x1 x2

x3x4

x0 x1 x2 x3 x4 m1 m2

x0

x1

x2

x3

x4

m1

m2

Step 1: Initial entries for robot poses x0, ...,x4.

x0 x1 x2

x3x4

m1 x0 x1 x2 x3 x4 m1 m2

x0

x1

x2

x3

x4

m1

m2

Step 2: Adding edges from x1 and x4 to m1.

x0 x1 x2

x3x4

m2m1 x0 x1 x2 x3 x4 m1 m2

x0

x1

x2

x3

x4

m1

m2

Step 3: Adding edges from x2 and x3 to m2.

Figure 3.4: An example of information matrix building. Here white cells are zero
elements, black cells are non-zero elements.

9

Chapter 3. Preliminaries 3.2. OKVIS

3.2 OKVIS

3.2.1 Introduction

OKVIS was introduced in 2015 by Stefan Leutenegger et al [LLB+15]. It is a
variation of the full SLAM system. The authors have formulated a probabilistic
cost function using reprojection errors of landmarks and inertial terms. The basic
notion is same as the full SLAM in the previous subsection, however instead of
using the full pose and measurements history, OKVIS uses a limited set of most
recent poses. This way the problem is kept tractable and real-time processing
is possible. The optimization is limited to a bounded window of keyframes that
can be divided in time by arbitrary intervals related by linearized inertial terms.
OKVIS supports mono camera systems as well as multiple camera systems.
Since OKVIS doesn’t use the full global set of measurements, it can be argued
if OKVIS is a SLAM system or a visual-inertial odometry. Generally OKVIS
is a visual-inertial odometry system with locally consistent estimations. From
now on, our improvements over OKVIS that add globally consistent estimation
features are called the SLAM layer.
The processing pipeline starts with Harris corner detector [HS88] and BRISK
descriptor [LCS11]. The last pose is propagated using the acquired IMU mea-
surements to obtain an uncertain estimate. A local map with known 3D posi-
tion of landmarks is available at this point. To obtain correspondences, 3D-2D
matching is performed with discarding of outlier points. Next, 2D-2D match-
ing is performed to associate keypoints without known 3D landmark correspon-
dences. Finally, a relative pose estimation via 3D-2D matches and RANSAC
filtering [KF14] is performed between the current frame and newest keyframe.

3.2.2 Notation

The variables that are going to be estimated are the robot states at frame k (here
we use frame k instead of time t) xk

R and landmarks xL. Here subscript letters
define reference frame, W for world reference frame, S for IMU reference frame.
A point P represented in frame A is written as ArP . Quaternion that transforms
from frame B to frame A is denoted as qAB. Velocity that corresponds to frame
A is written as Av.
The variable xR consists of a robot position W rS, body orientation quaternion
qWS, velocity Sv, the gyroscope biases bg and the accelerometer biases ba.

Therefore, xR is defined as:

xR = [W rTS ,q
T
WS,S vT ,bT

g ,b
T
a]T (3.7)

The full state can be decomposed into pose error state xT = [W rTS ,q
T
WS,S]T

and speed/bias error state xsb = [vT ,bT
g ,b

T
a]T .

10

3.2. OKVIS Chapter 3. Preliminaries

In practical formulations of the visual odometry, a nonlinear optimization finds
the camera poses and landmark positions via minimizing the reprojection errors
of the landmarks. Figure 3.5 (left) shows such an example. If we introduce
the inertial measurements, they create temporal constraints between poses as
well as between speed and IMU bias estimates 3.5 (right). The authors wanted

Landmarks Landmarks

Keypoint measurements

Pose

IMU meaurements

Speed / IMU biases

time time

Visual odometry Visual-inertial odometry

xk−3
T xk−2

T xk−1
T xk

T xk−3
T xk−2

T xk−1
T xk

T

xk−3
sb xk−2

sb xk−1
sb xk

sb

Figure 3.5: The difference between visual odometry (left) and visual-inertial
odometry (right).

to formulate the problem as a joint optimization of a cost function J(x) that
contains both reprojection and temporal errors:

J(x) =
I∑

i=1

K∑
k=1

∑
j∈L(i,k)

ei,j,kT
r Wi,j,k

r ei,j,k
r︸ ︷︷ ︸

visual

+
K−1∑
k=1

ekT
S Wk

Sek
S︸ ︷︷ ︸

inertial

(3.8)

where er is the reprojection error term, eS is a temporal error term from IMU, i
is a camera index, k is the camera frame index, the landmarks visible in kth frame
and ith camera are represented by L(i, k). Moreover, Wi,j,k

r is the information
matrix of the landmark measurement and Wk

S is the information matrix of the
kth IMU error. The reprojection error is adopted from [BFF11] and is formulated
as:

ei,j,k
r = zi,j,k − hi(T

k
CiSTk

SW lj) (3.9)

where hi(.) denotes the camera projection model and zi,j,k are the measurement
image coordinates. The IMU error term is formulated as:

11

Chapter 3. Preliminaries 3.2. OKVIS

ek
S(xk

R,x
k+1
R , zk

S) =

wr̂k+1
S −w rk+1

S

2[q̂k+1
WS ⊗ qk+1

WS]
x̂k+1
sb − xk+1

sb

 (3.10)

that is just a difference between the predicted and actual states.

3.2.3 Keyframes and marginalization

OKVIS distinguishes two kinds of frames and it keeps the S most recent frames
including the current frame and M keyframes that could have been taken far in
the past. The decision if the new frame is a keyframe is simple: if the hull of the
projected landmarks covers less then 50% of the image, then the frame is treated
like a keyframe.
The initially marginalized error term is built from the first M + 1 frames xk

T with
their speed and biases. When a new frame xc

T (where c means index of current
frame) is inserted into optimization window, the marginalization operation is
applied. If the oldest frame xc−S

T is not a keyframe, it has to be marginalized out
with its speed and bias sates. The landmarks of this frame should be dropped.
See Figure 3.6.
If xc−S

T is a keyframe, then simply dropping all the landmarks would be too big
information loss, so instead, OKVIS marginalizes out the landmarks that are
visible in this keyframe, but not in the newer frames. See Figure 3.7.

Landmarks

Keypoint measurements

Poses
(blue - keyframe, dark - frame)

IMU meaurements

Speed / IMU biases

Previous marginalized term

Will be dropped

Will be marginalized

Marginalisation window

xk1
T xk2

T xk3
T xc−3

T xc−2
T xc−1

T
xc
T

xc
sbxc−1

sbxc−2
sbxc−3

sb

Figure 3.6: The example of the non-keyframe marginalizing. Here a regular frame
as well as its speed and bias states are marginalized out. The corre-
sponding landmarks are simply dropped.

12

3.3. Image similarity Chapter 3. Preliminaries

Landmarks

Keypoint measurements

Poses
(blue - keyframe, dark - frame)

IMU meaurements

Speed / IMU biases

Previous marginalized term

Will be dropped

Will be marginalized

Marginalisation window

Visible in
KF1 only

xk1
T xk2

T xk3
T xc−3

T xc−2
T xc−1

T
xc
T

xc
sbxc−1

sbxc−2
sbxc−3

sb

Figure 3.7: In this case, the keyframe frame is marginalized out. The correspond-
ing landmarks that are not seen in the newer keyframes are marginal-
ized out too.

3.3 Image similarity

In order to detect loop closures, we need to be able to reliably tell from the image
pair that they were taken in the same location pointing in the same direction.
This can be easily solved by comparing complete images pixel by pixel, but any
change in the pose, illumination or environment would render this approach not
usable. The image similarity measure has to be robust to such changes (see
Figure 3.8). We have compared two existing approaches: FAB-MAP 2.0 [CN11]
and DBoW2 [GLT12]. They both claim to be able to solve the task of detecting
the similarity between images from different points of time.

Figure 3.8: The example of two images that are not exactly the same, but should
be matched as similar to perform the loop closure.

13

Chapter 3. Preliminaries 3.3. Image similarity

3.3.1 FAB-MAP 2.0

FAB-MAP [CN08] was originally developed in 2008 by Mark Cummins and Paul
Newman. The main motivation was the problem of of appearance-based place
recognition at very large scale. Later, in 2009 the authors proposed an updated
version called FAB-MAP 2.0 [CN11].
The main data structure that is used is a bag-of-words model. First, a vocab-
ulary is created by clustering feature vectors for all images in the training set.
Second, features from the test images are associated with the visual words from
the vocabulary. Authors use SURF feature descriptor [BTVG06], but in general,
other feature descriptors can be used.

Figure 3.9: Graphical model of FAB-MAP system. Here locations L generate
existence variables e. Observed zi are conditioned on ei via detector
model and in each other by the Chow Liu tree. Image credit: [CN11].

The system builds a probabilistic model over the bag-of-words. An observation
(a camera image in our case) is denoted as Zk = {z1, ..., z|v|}, where k represents
the time when the observation was captured, |v| is the size of the vocabulary and
zi is a binary variable referring to presence of the ith word in the observation. The
world is modeled as a set of discrete and disjoint locations Lk = {L1, ..., Lnk

}.
For each location there is an appearance model:

{p(e1 = 1|Li), ..., p(e|v| = 1|Li)} (3.11)

Here ei represents feature existence. A location can correspond to some real-world
area, like a room. A detector model associates ei with zi:

D :

{
p(zi = 1|ei = 0), false positive probability

p(zi = 0|ei = 1), false negative probability
(3.12)

14

3.3. Image similarity Chapter 3. Preliminaries

The authors note, that in most cases visual words occurrences are correlated.
For example, if there are car wheels in the image, then not far there are also car
doors. Such dependencies are learned by a tree-structured Bayesian network via
Chow Liu algorithm [CL68]. This algorithm delivers the optimal approximation
to the joint distribution over word occurrence within the space of tree-structured
networks (see Figure 3.9).

Having a probabilistic appearance model, mapping and localization can be
implemented as a recursive Bayes estimation problem. Then a probability density
function over location up to time k is given by:

p(Li|Zk) =
p(Zk|Li,Zk−1)p(Li|Zk−1)

p(Zk|Zk−1)
(3.13)

Where p(Li|Zk−1) is a location prior (obtained from previous estimate by trans-
forming the prior using a motion model), p(Zk|Li,Zk−1) is the observation like-
lihood and p(Zk|Zk−1) is a normalization term.

To define the observation likelihood, authors assume that current and past
observations are independent, and use the Chow Liu model, giving:

p(Zk|Li) = p(zr|Li)

|v|∏
q=2

p(zq|zpq , Li) (3.14)

where zpq is a parent of zq in the Chow Liu tree and zr is a root. Further expansion
leads to:

p(zq|zpq , Li) =
∑

seq∈{0,1}

p(zq|eq = seq , zpq)p(eq = seq |Li) (3.15)

After computing the pdf over locations, data association can be made. The
observation Zk can be used to initialize a new location or to update the model of
an exiting one. Each component of the model is updated as follows:

p(ei = 1|Lj,Zk) =
p(Zk|ei = 1, Lj)p(ej = 1|Lj,Zk−1)

p(Zk|Li)
(3.16)

The main difference between versions 2.0 and original FAB-MAP is that in
2.0 authors wanted to improve the scalability. For this, they use inverted index
retrieval architecture. It extends applicability by more than two orders of mag-
nitude in scale.

3.3.2 DBoW2

DBoW2 [GLT12] is another algorithm for visual place recognition that was intro-
duced in 2012 by Galvez-López and Juan D. Tardos. It is based on bag of words

15

Chapter 3. Preliminaries 3.3. Image similarity

model (like FAB-MAP) however due to novelties, the computation speed is much
faster then other approaches. A bag of words discretizes a binary space and uses
a direct index next to an inverse index.

Figure 3.10: DBoW2 vocabulary and indexes example. Here the leaf nodes are
the vocabulary words. The inverse index contains the weight of the
words in the images. The direct index contains the features and their
associated nodes. Image credit: [GLT12].

In order to detect revisited places, an image database is built using a hierarchi-
cal bag of words. The database also includes both direct and inverse indexes (see
Figure 3.10). As usual, the visual vocabulary is trained offline by discretizing the
descriptor space into W visual words. Hierarchical vocabularies use a tree as its
structure. The tree is formed by clustering features associated with each level,
resulting in W leaves that are the words of the vocabulary. Each word has a differ-
ent weight that is calculating using term frequency - inverse document frequency
(tf-idf). To convert an image It taken at time t into a bag-of-words vector vt, the
descriptors traverse the tree from top to leaves by selecting nodes that minimize
the distance. Then the similarity between two vectors can be calculated as a L1

score:

s(v1, v2) = 1− 1

2
| v1

|v1|
− v2

|v2|
| (3.17)

Apart from the bag of words, there is also an inverse index. For every visual
word wi, the inverse index stores a list of images where this word can be found.
This way, it is fast to query for images that have some visual words in common.
The inverse index is updated when a new image is added and is accessed when
images are being searched in the database.

16

3.3. Image similarity Chapter 3. Preliminaries

When a new image It is taken, it is converted into a bag-of-words vector vt.
This vector is searched in the database resulting in candidate pairs < vt, vt1 >,...,
< vt, vtj > sorted by their normalized score:

η(vt, vtj) =
s(vt, vtj)

s(vt, vt − δt)
(3.18)

Images that are close in time are grouped together into islands and are treated
as a single match. This is done to remove the competition between similar images
during the database query. Such matches< vt, vtni

>,...,< vt, vtmi
> are converted

into < vt, VTi
> if the gaps in timestamps are small. The ranking for the islands

look as following:

H(vt, VTi
) =

mi∑
j=ni

η(vt, vtj) (3.19)

The authors have compared their approach with FAB-MAP 2.0. As it ap-
peared, both approaches show comparable precision and recall (see Table 3.1).
The important difference, however, is that DBoW has much lower execution time.
Note that the number of images for Malaga6L dataset is different, because FAB-
MAP 2.0 performed better using lower frame frequency. We have performed our
own evaluation in the Evaluation chapter.

Table 3.1: DBoW2 vs FAB-MAP 2.0. Table credit: [GLT12].

Method/Dataset Images Precision (%) Recall (%)
DBoW2 Malaga6L 869 100 74.75
FAB-MAP 2.0 Malaga6L 462 100 68.52
DBoW2 CityCentre 2474 100 30.61
FAB-MAP 2.0 CityCentre 2474 100 38.77

17

4
Keyframe-based Visual-Inertial SLAM

This chapter describes which algorithms are implemented in this thesis and how
they are used.

4.1 SLAM

The main focus of this thesis lies on creating a Simultaneous Localization and
Mapping (SLAM) on top of an existing visual-inertial library OKVIS.

4.1.1 Motivation

The biggest difference between the two is that OKVIS is considering only a short
temporal local window during optimization, while SLAM is designed in a way
that enables to use a global view of the optimization. The short temporal local
window usually leads to errors accumulating over time. Thus, having a global
state, it is possible to use clues from the past to improve the trajectory estimation.
Namely, two important features of SLAM are developed in this thesis:

• Loop closures

• Relocalization

SLAM keeps track of visited locations and is able to detect if the same location
is revisited. With the help of this knowledge it is possible to see if the trajec-
tory has accumulated spacial drift. If it does, then extra factors that link similar
images together in the global keyframe graph can optimize the trajectory and
reduce the accumulated error (see Section 4.2.1 for details). This approach is
usually used when the agent moves in loops, this process is called Loop Closure.
This technique is especially useful, when the agent moves on long trajectories
that eventually close.
Once we have a complete optimized trajectory along with the keyframe image

19

Chapter 4. Keyframe-based Visual-Inertial SLAM 4.2. Loop closures

data as a map, this map can be reused during subsequent SLAM runs. For ex-
ample, the robot can first record a big discovery sequence in a new environment,
and then save the sequence as a map. The map can be reused while navigating
in local areas to provide the robot’s pose in the global map frame. This process
is usually referred to as Relocalization. Note that after establishing the map cor-
respondence, the SLAM continues using images from both new and old maps.

4.2 Loop closures

4.2.1 Graph optimization

We are using the library called gtsam to build and optimize the pose graph. The
vertices of the graph are poses estimated by OKVIS. Essentially these vertices
are subject to optimization (in gtsam terminology they are called Values). We
distinguish two types of edges (Factors) between the poses:

• Relative pose between subsequent frame poses Tk
k−1, that is calculated from

OKVIS

• Relative pose between keyframes that were detected as a loop closure Tj
i .

The relative transformation between the two is taken from RANSAC 3D-2D
matches algorithm.

Note, that if we just use OKVIS poses, then the optimization would not change
the graph, because OKVIS already provides the optimized results.

Having such a graph structure we are able to account for loop closures and
improve the estimation. An example of the graph can be seen in Figure 4.1.

Now we can formalize the described above as a cost function that should be
minimized:

J(x) =
K∑
k=1

||xk −Tk
k−1xk−1||2Σk︸ ︷︷ ︸

OKVIS relative constraints

+
∑

(i,j)∈S

||xj −Tj
ixi||2Σij︸ ︷︷ ︸

loop closure constraints

(4.1)

where k is a camera frame index, xk is the SLAM estimated camera pose, Tj
i

is the relative transformation between pose i and j, S is a set of similar image
correspondences. Each information matrix Σk is a diagonal matrix with its non-
zero elements being proportional to images overlay percentage, i.e. the bigger the
size of the shared part between two images, the higher the correlation between
their poses. The overlay percentage is computed by OKVIS to make a keyframe
creation decision. The relative transformations between subsequent poses T i+1

i

are extracted from OKVIS estimated trajectory. The relative transformations

20

4.2. Loop closures Chapter 4. Keyframe-based Visual-Inertial SLAM

Pose from OKVIS

Factor between poses

Loop closure factor

Before optimization After optimization

T k
k�1

T j
i

Figure 4.1: An example of gtsam pose graph. Black edges are calculated from
OKVIS estimated poses, yellow edges are the result of loop closure
detection. Before the optimization, starting and finishing positions
are not quite the same. After optimization with respect to loop closure
constraints, the starting and finishing positions are well aligned.

between frames that were detected as similar T j
i are calculated using RANSAC

3D-2D relative pose estimation. The norm in Equation 4.1 is defined as follows:

||a||2Σ = aTΣ−1a (4.2)

This way we minimize the difference of the resulting graph from OKVIS estima-
tion while also satisfying the spatial constraints from similar image matches (loop
closure constraints). The minimization of J(x) happens using gtsam library.

4.2.2 Algorithm

The loop closure is an essential part of the SLAM layer. The optimization of the
global trajectory happens when the same area is being revisited (Figure 4.2a and
Figure 4.2b). How do we detect that the agent has been here before? We com-
pute the similarity between the current image frame and all frames in the past.
If the similarity measure is high enough, then we assume that these landmarks
were seen before.

In order to compute the similarity we use two steps:

• DBoW2 - Bags of Binary Words for Fast Place Recognition in Image Se-
quences [GLT12] for initial image comparisons.

• Relative RANSAC with 3D-2D matches [KF14] to geometrically verify
DBoW2 and to compute 3D transformation between image poses.

21

Chapter 4. Keyframe-based Visual-Inertial SLAM 4.2. Loop closures

It is important to mention that SLAM uses two notions for the frames - the
frame and the keyframe. Namely, the keyframe is a frame that is detected as
a key by OKVIS. The criterion is how many keypoints are shared with the last
keyframe. If less then 60% then OKVIS makes this frame a new keyframe. From
the SLAM side, the regular frame poses are only added to the pose graph, no
other processing is being made. On the other hand, the keyframes are checked
for image similarity and loop closures. You can see the references to frame id
and keyframe id, the association between these two is stored in the meta.txt file
of the map.
The problem with computing the image similarity is that, in most cases, the
current frame looks much like the one before it, but this is not what we need
for the loop closure detection (the agent hadn’t moved out of the area). This
problem is solved by tracking if there are frames in between the two that have
completely different landmarks and keypoints. If they do have such landmarks,
then we can safely assume that the agent had moved out of the area and then
back again.
Summing up all the above, we can formulate the general loop closure algorithm:

1: procedure ConsumerLoop . Runs while there is data
2: for OKVIS has processed frame do
3: frame = getFrameFromOkvis()
4: if not frame.isKeyframe then . Regular frame
5: addPoseToPoseGraph(frame.pose)
6: continue
7: end if
8: addToDBoWIndex(frame.image)
9: match = findDBoWMatch(frame.image)

10: if match is not empty then
11: tf = computeRelativeTransform(frame.image, match.image)
12: if tf is not empty then
13: addExtraEdgeToPoseGraph(tf) . Loop closure detected
14: optimizePoseGraph()
15: end if
16: end if
17: end for
18: end procedure

22

4.3. Relocalization Chapter 4. Keyframe-based Visual-Inertial SLAM

(a) The correction that happens during the
loop closure.

(b) A simple case of the trajectory to
showcase the difference between odom-
etry without loop closure detection and
SLAM.

Figure 4.2: Loop closure graphical examples.

4.3 Relocalization

4.3.1 Motivation

There are cases, when knowing the agent’s position in relation to the starting
point is not enough. Sometimes, it is more useful to know the position in relation
to some already built map. For example, during a first run, the robot can explore
the whole environment and build a map. Any subsequent runs, the robot can
just reuse the already stored map to relocalize itself in the map. A cleaning
robot can build a map of the apartment and if the cleaning is interrupted, it can
use the position in the map to return and finish the job. What we wanted to
achieve is a mechanism to save the map and relocalize within this map if needed.
Such functionality should run next to SLAM and OKVIS without interrupting or
changing them. An illustration can be seen in Figure 4.3. Here, the second run
trajectory is relocalized within the saved map and these trajectories are aligned
together. After the trajectories are aligned and the maps are fused together, the
SLAM continues as usual, making use of the images from both maps.

(a) Two initial maps (trajectories) before
relocalization.

(b) One merged map that uses shared
landmarks.

Figure 4.3: Example of how relocalization works.

23

Chapter 4. Keyframe-based Visual-Inertial SLAM 4.3. Relocalization

4.3.2 Algorithm

So the general idea is to find a shared trajectory piece and align both trajectories
together. This way, we can have the position in the map coordinate frame. In the
notation we distinguish new map (xnew) and old saved map (xold). The camera
frame indexes are k for xnew and p for xold; The following steps were implemented
to archive this:

• New trajectory is started in the origin (0, 0, 0) point, like any other OKVIS
trajectory (Figure 4.5 1)). The optimization has the same form as in regular
SLAM:

J(xnew) =
K∑
k=1

||xnew
k −Tk

k−1x
new
k−1||2Σk

+
∑

(i,j)∈Snew

||xnew
j −Tj

ix
new
i ||2Σij

(4.3)

• Every keyframe is checked for the match with the old map’s keyframes.
DBoW2 and RANSAC are used the same way as for loop closure detections.
If the similar image is found in the map, this keyframe association is saved
as a relocalization hypothesis H (Figure 4.5 2)):

Hi = [Tp
k] (4.4)

where k and p is a pair of similar images from both maps.

• If multiple hypotheses exist for neighbor keyframes, they are merged to-
gether into single hypothesis (Figure 4.5 3)).

if Hi = [Tp
k], Hj = [Tp+1

k+1]

then Hi = [Tp
k,T

p+1
k+1], Hj is dropped

(4.5)

• Once there is a long enough hypothesis that consists of four keyframe as-
sociations, the relocalization transformation between two maps Tmaps is
calculated. This transformation moves new trajectory points from (0, 0, 0)
origin, to the old map’s origin (Figure 4.5 4)).

Hi = [Tp
k, ...,T

p+3
k+3]

Tmaps = Tp+3
k+3

(4.6)

24

4.3. Relocalization Chapter 4. Keyframe-based Visual-Inertial SLAM

• Internally, two trajectories are merged together including keyframe graphs
and images. This allows to reuse old map’s images to create additional
factors in the graph. The full optimization is now formulated as:

J(x) =
K∑
k=1

||Tmapsx
new
k −TmapsT

k
k−1x

new
k−1||2Σk

+
P∑

p=1

||xold
p −Tp

p−1x
old
p−1||2Σp

+
∑

(i,j)∈S

||xj −Tj
ixi||2Σij

(4.7)

where x is a set of all poses from both maps and S is the set of similar
image pairs from both maps.

• At this point two trajectories act as a single one, so if subsequent images
are similar to images in the old map, loop closure mechanism automatically
creates additional links, further improving trajectories alignment. (Figure
4.5 5))

The pseudo-code algorithm is in Figure 4.4.

1: procedure TryToRelocalize(frame) . Called for each new keyframe
2: match = findDBoWMatch(frame.image, old map)
3: if match is not empty then
4: tf = computeRelativeTransform(frame.image, match.image)
5: if tf is not empty then
6: insertToHypothesis(tf)
7: end if
8: h = longestHypothesis()
9: if h.size == 4 then

10: T maps = computeRelativeTransform(h)
11: old map.appendMap(new map, T maps)
12: end if
13: end if
14: end procedure

Figure 4.4: Relocalization algorithm.

25

Chapter 4. Keyframe-based Visual-Inertial SLAM 4.3. Relocalization

(a) 1) Initial points, independent from old map. 2) First image correspondences. 3)
Hypothesis building.

(b) 4) Translating to old map’s coordinate frame. 5) Merging trajectories and align-
ment improvements.

Figure 4.5: Stages of relocalization. Blue trajectory is old map (xold). Red tra-
jectory is a new trajectory (xnew) that needs to be relocalized within
the old map. Yellow shows similar images that build up hypothesis
(Hi).

26

5
Implementation

This chapter will describe the hardware and software setup that was assembled
to perform visual-inertial odometry and SLAM.

5.1 Hardware

In order to perform visual-inertial odometry, specific hardware is required. First,
one or multiple cameras are needed to capture the landmarks and depth. The
number of cameras influences the quality of the odometry estimation - one camera
brings depth uncertainty, while three cameras and more introduce a lot of com-
plexity in the calibration, synchronization, and computation. Therefore, the se-
tups with two cameras are used in the most recent approaches [LLB+15] [MR07b]
. To improve the estimation of the body position in 3D space, the cameras are
aided with an IMU that contains an accelerometer and a gyroscope. This way,
cameras and the IMU together deliver a better quality of the odometry estima-
tion.
As an example of existing setups, let’s have a look at the EuRoC hardware, that
was used to record EuRoC MAV dataset [BNG+16] and to evaluate OKVIS:

• Aptina MT9V034 global shutter, WVGA monochrome, 2x20 FPS (Fig-
ure 5.1b)

• MEMS IMU (ADIS16448, angular rate and acceleration, 200 Hz)

• Asctec Firefly hex-rotor helicopter to carry the setup (Figure 5.1a)

All components are intrinsically and extrinsically calibrated. The cameras and
the IMU are synchronized. Note, that placing the setup on the drone allowed
to perform faster and more varied movements compared to the ground robots or
manual recording.

27

Chapter 5. Implementation 5.1. Hardware

(a) Asctec Firefly hex-rotor helicopter
used during dataset collection.

(b) Visual-Inertial sensor unit and cameras
(carried by the helicopter).

Figure 5.1: EUROC hardware for visual-inertial odometry. Images credit:
[BNG+16].

We decided to assemble our own hardware setup in order to be able to con-
duct loop closure and relocalization experiments. The following components were
selected:

• Manta G-046 cameras, operating at 20 fps and 780 x 580 resolution.

• Xsens MTi-G IMU, operating at 200 Hz.

The cameras were attached to a metal plate with the IMU located between
them. In order to perform the capture triggering of the cameras by the IMU, we
connected the transistor from the SyncOut pin of the IMU to the trigger pin of
the cameras. To transfer the captured data, the cameras use GigA technology
that allows to use a LAN cable as a transport. To connect together both cameras
and a laptop that is used for recordings, a 1 Gbit switch was used. The IMU is
connected to the laptop via Rs232 serial USB connector. The power is delivered
to the setup from a battery through the specially soldered power cable. This
way, the setup is power-independent, allowing to make the recordings in different
environments both indoors and outdoors. The whole assembly can be seen at
Figure 5.2.
Later during development, we needed a way to start/stop recording while the
laptop was in a backpack that was used to carry the setup for recording. To
solve this problem we have used Logitech Wireless Gamepad F710 and a simple
Python wrapper (joystick ctl.py) that checks button presses and starts or stops
the recording. Also, this way we are able to make checkpoints, i.e. press the
specific button every time the person visits some location, after multiple visits we
can check how close the checkpoints are in the processed sequence (see Evaluation
chapter).

28

5.2. Calibration Chapter 5. Implementation

Figure 5.2: Our assembled setup.

5.2 Calibration

A good calibration is one of the main prerequisites for visual-inertial odometry.
The following have to be calibrated:

• Camera intrinsics (distortion coefficients, focal length, principal point).

• Camera extrinsics (poses relative to the IMU and to each other).

• IMU intrinsics (noise model, biases).

• Time synchronization between all sensors.

The authors of OKVIS recommend to use Kalibr calibration toolbox [FRS13],
so we have followed their advice. For the calibration, the repeated special pattern
Aprilgrid was used with the size 0.8 m by 0.8 m.
The calibration process consists of two major parts. First, cameras are calibrated
intrinsically and extrinsically. The camera system is fixed and only the calibra-
tion target is moved in front of the cameras in the different directions to cover
the whole camera image. The recording and subsequent cameras calibration is
initiated as following:

1 cd ka l ib r workspace
2 rosbag record / cam l e f t / image raw / cam right / image raw −O

s t a t i c . bag
3 k a l i b r c a l i b r a t e c a m e r a s −−bag s t a t i c . bag −−t o p i c s

/ cam l e f t / image raw / cam right / image raw −−models
p inhole−radtan pinhole−radtan −−t a r g e t g r id . yaml

29

Chapter 5. Implementation 5.3. Synchronization

Note, that Kalibr outputs pdf and yaml files as a result of calibration. The data
from the yaml file has to be copied to the OKVIS/SLAM configuration file.

Second, the IMU to cameras calibration. In this case, the calibration target
is stationary, while the IMU-cameras system is moved around (having the target
in the view port). During the calibration process, it is important to ensure good
and even illumination of the calibration target and to keep the camera shutter
times low to avoid excessive motion blur.
The recording and subsequent IMU-cameras calibration is initiated as following:

1 cd ka l ib r workspace
2 rosbag record / cam l e f t / image raw / cam right / image raw

/ cam l e f t / exposure / cam right / exposure /imu/ data
/imu/ ana log in1 −O dynamic . bag

3 python bag ad jus t . py dynamic . bag dynamic adj . bag
4 k a l i b r c a l i b r a t e i m u c a m e r a −−cam <cameras c a l i b r a t i o n

r e s u l t >.yaml −−t a r g e t g r id . yaml −−imu imu0 . yaml −−bag
dynamic adj . bag

Note, that Kalibr outputs pdf and yaml files as a result of calibration. The data
from the yaml file has to be copied to the OKVIS/SLAM configuration file.

5.3 Synchronization

Unfortunately, the time synchronization is not covered by Kalibr. Generally
speaking, there are two options. One is a software synchronization, when the
timestamps are captured and adjusted by the host system. Another is a hardware
synchronization. We decided to perform a hybrid combination of both.
The cameras are running at 20 Hz, while the IMU is running at 200 Hz. We need
to be sure that every 10th measurement of the IMU triggers the image capturing
in the cameras. This way, a constant measure density is maintained. The IMU
has a so called SyncOut pin that can be set to high every few measurements (in
our case 10). This signal was connected to the camera’s SyncIn pin that triggers
the image acquisition process. Since the SyncOut current is not strong enough
to power two SyncIn pins, we have used a transistor in between that keeps the
signal stable.
However, the cameras and the IMU do not share a single clock, so we can only
use the timestamps of the host system (ROS) that represent the time when the
measurement was received and processed, but not the real device capture time.
On the other hand, we know that inner clocks of the devices are precise enough
and that time deltas are 5 ms (δIMU) and 50 ms (δC) for the IMU and the cameras
respectively. This way we can use the system timestamps with fixed deltas to
adjust the IMU and camera timestamps. The important question is how do we

30

5.3. Synchronization Chapter 5. Implementation

(a) Left camera (b) Right camera

Figure 5.3: Reprojection errors after cameras calibration

know which IMU measurement has triggered the camera. For this we have created
a loop connection from IMU SyncOut to IMU SyncIn, then in the IMU driver we
can read the state of SyncIn pin and add it as data to the IMU packages. This
way we can find out exactly which IMU measurement is the trigger (T IMU trig

k)
that triggered the camera.
Having relative time deltas and the knowledge of which IMU measurement is a
trigger, we can align camera and IMU timestamps. But in practice, the camera
starts image acquisition a bit later then the IMU trigger due to trigger latency
(lC), so this latency is added as a constant (28600 ns). Moreover, it makes sense
to set camera timestamp not to acquisition beginning, but to the middle of the
exposure time to get more accurate results [NRB+14]. For that, we also record
the exposure time from the camera (ek) and add half of the exposure time during
adjusting. Summing all above, the formulas for time synchronization are:

T IMU
i = T start + iδIMU

TC
k = T IMU trig

k + lC + 0.5ek
(5.1)

31

Chapter 5. Implementation 5.4. Integration with OKVIS

where T IMU
i is the ith IMU adjusted timestamp, T start is the system timestamp

for the first received measurement, TC
k is the kth camera adjusted timestamp.

T IMU trig
k shows the timestamp of the IMU measurement that has triggered kth

camera measurement. The time synchronization was implemented as a separate
Python script that takes a recorded sequence in ROS bag format and produces
its synchronized version.

5.4 Integration with OKVIS

The SLAM layer should be integrated with OKVIS because SLAM uses OKVIS
optimization results to further improve the trajectory estimation. Earlier in this
thesis development it was decided not to change OKVIS library in any significant
way. As a consequence, the bundle of OKVIS with SLAM layer is fully compatible
with the original OKVIS library. Only minor additions were made to the source
code.
The bundle still runs as a single process or a ROS node. OKVIS itself is multi-
threaded via C++11 threads and runs as a single ROS node that can be:

• Synchronous - waits for the visual and inertial data to be fully processed

• Asynchronous - skips the data, if needed, to work in real-time

Figure 5.4: The diagram of how threads are related within a process.

We have picked an architecture that leaves the running structure unchanged -
the bundle still runs as a single ROS node in one of the two modes. What changes
is that SLAM is running in parallel with OKVIS using an extra C++11 thread
(see Figure 5.4). To function properly, SLAM requires images from the camera
(we use the left one) and the pose that is optimized by OKVIS. Moreover, we are
interested in the poses that have been marginalized and moved out of OKVIS’
optimization window. This way we are sure that the pose is fully optimized and
is not going to change in the future. Such frames are put into a thread-safe queue
in the OKVIS thread and are used further in the SLAM thread that blocks and

32

5.4. Integration with OKVIS Chapter 5. Implementation

does nothing until a keyframe arrives in the queue (see Figure 5.5). Note, that
SLAM itself doesn’t block OKVIS or influence it in any way, the communication
is one-way, allowing OKVIS to run at the same speed as before (on a multi-core
processor). We wanted to make sure that if OKVIS can run in real-time, then
SLAM doesn’t change this fact and also can run in real-time.

Figure 5.5: The diagram of how the data is passed in the system. Note, that
the MultiFrame is a container class from OKVIS that includes both
camera images, the landmarks and the associated pose.

As it was mentioned in Section 5.6.7, the start up happens mostly in the same
way.
For OKVIS:

1 ros launch okv i s node synchronous . launch
bag :=/ path/ to / d a t a s e t a d j . bag

For SLAM:

1 ros launch s lam node synchronous . launch
bag :=/ path/ to / d a t a s e t a d j . bag
save to :=/ path/ to / save /map/

The main difference is that instead of okvis node synchronous.launch we use
slam node synchronous.launch and the extra parameter save to is added that
should point to the folder, where the map will be stored. There is another new

33

Chapter 5. Implementation 5.5. Output

parameter called load from that should point to the map that is used during
relocalization. The start code looks as follows:

1 ros launch s lam node synchronous . launch
bag :=/ path/ to / o t h e r d a t a s e t a d j . bag
save to :=/ path/ to / save /map/
load from :=/ path/ to / load /map

The relocalization is optional in SLAM as well as load from parameter that can
be omitted if SLAM is started without the relocalization feature.

5.5 Output

The main result of OKVIS is the real-time pose of the hardware setup in the
world frame. The ROS node is publishing this information as a ROS topic
called /okvis node/okvis transform. Each published entry consists of the trans-
lation (x, y, z) and the rotation in the form of a quaternion (x, y, z, w).
SLAM keeps this topic without any changes and adds a new one called /s-
lam node/slam camera pose. The new topic has the same structure with the
difference that the pose has loop closure optimizations already applied (if any).
So, generally speaking, the pose published by SLAM is exactly the same as by
OKVIS or has a better precision.

Map files

Apart from publishing the real-time pose, SLAM saves the map after the whole
processing is done. The map’s files are structured as following:

• frames/ - the folder contains the images of the keyframes

• matches/ - the folder contains the loop closure image pairs

• meta.txt - the file with the mapping from keyframe ids to frame ids and
with the pointer to the matched image (if any)

• original.txt - the file with the not optimized (OKVIS) trajectory in g2o
format

• optimized.txt - the file with the optimized (SLAM) trajectory in g2o format

• original eval.txt - the file with the not optimized (OKVIS) trajectory in
evaluation format

• optimized eval.txt - the file with the optimized (SLAM) trajectory in eval-
uation format

34

5.5. Output Chapter 5. Implementation

5.5.1 File formats

The g2o file format represents the pose graph and consists of the two kinds of
entities: vertices and edges. First, all vertices are listed, each on the separate line
with the following syntax:

1 VERTEX SE3:QUAT v e r t e x i d X Y Z QX QY QZ QW

where “VERTEX SE3:QUAT” is a constant string, “vertex id” is a unique integer
and the rest are float numbers. The translation is represented by “X”, “Y”, “Z”
and the rotation quaternion is represented by “QX”, “QY”, “QZ”, “QW”.
Second, after all the vertices, there are all the graph edges, each on the separate
line with the following syntax:

1 EDGE SE3 :QUAT from id t o i d X Y Z QX QY QZ I0 . . . I20

where “EDGE SE3:QUAT” is a constant string, “from id” and “to id” are the ids
of the vertices that edge is connecting. As before, the translation is represented
by “X”, “Y”, “Z” and the rotation quaternion is represented by “QX”, “QY”,
“QZ”, “QW”. The edge represents the relative transformation from one vertex
to another. However, it is important to know, that the translation and the
rotation of the edge are provided in the frame of the vertex where the edge
comes from. This is a big difference to vertices themselves, because vertices
transformations are all provided in the world frame. The rest of the line are 21
floats “I0” to “I20” that represent the top right corner of the edge’s information
6 × 6 matrix. This information matrix is the inverse of the covariance matrix
that shows how strongly translation and rotation are correlated. In the case of
our thesis, this matrix is always a diagonal one.
The images are stored in the gray-scale PNG format having a frame id as a
filename. To know what keyframe id corresponds to frame id, the meta.txt file
can be inspected.

5.5.2 Visualization

As part of the thesis, we have implemented a tool for the visualization of the map.
The tool can be used to visually inspect the quality of the algorithm, to compare
the trajectories of SLAM and OKVIS, and to check that the loop closure image
pairs are properly located in space. The visualizer is implemented using Qt and
libQtGlViewer, the 3D graphics is programmed using OpenGL. See Figure 5.6
for the typical usage screenshot.

35

Chapter 5. Implementation 5.6. Software documentation

Figure 5.6: The visualization of the map of the loop-walking in the office. The
blue trajectory represents OKVIS original version (here the trajectory
drifts a little bit). The red trajectory represents SLAM optimized
version. The yellow lines link the loop closure keyframes.

5.6 Software documentation

The recording and processing of the datasets is happening in ROS. OKVIS itself
is implemented as a ROS node. For storage, ROS bag files are used.

5.6.1 Installation

In order to install SLAM, we first recommend to install original OKVIS from its
github page https://github.com/ethz-asl/okvis ros. Most of the libraries required
by SLAM are the same as for OKVIS. Once the original OKVIS is compiled suc-
cessfully, SLAM can be built too.
The only extra library required by SLAM is opencv with non-free components
(for SURF). Usually, opencv that is bundled with the OS lacks these compo-
nents and you have to build full opencv manually. You probably will have to
update “OpenCV DIR” and “OpenCV CONFIG PATH” variables to point to
your build’s “share” folder (see example below).
Building SLAM is similar to OKVIS:

1 cd s lam workspace
2 catkin make −DOpenCV DIR :PATH=

/home/kasyanov/ l i b s / share /OpenCV/
−DOpenCV CONFIG PATH:FILEPATH=
/home/kasyanov/ l i b s / share /OpenCV/

After building, you have to source the library:

1 cd s lam workspace
2 source deve l / setup . sh

For convenience, this code can be added to /.bashrc or /.bash profile to avoid
typing it every time.

36

5.6. Software documentation Chapter 5. Implementation

5.6.2 Drivers

There are drivers for ROS for both cameras (prosilica camera) and for IMU
(ethzasl xsens driver) that can be installed from Ubuntu repositories or from
their github pages. However, we have made some important modifications to ex-
isting drivers and bundled the drivers together with thesis: in ethzasl xsens driver
we have fixed a bug with SyncIn (analogin1) recording and in prosilica camera
we have added the ability to publish camera’s exposure. To build new drivers,
execute

1 cd $DRIVER WORKSPACE
2 catkin make

in each driver’s workspace. After that, the drivers have to be activated using
the following command:

1 cd $DRIVER WORKSPACE
2 source deve l / setup . sh

For convenience, this code can be added to /.bashrc or /.bash profile to avoid
typing it every time.

5.6.3 Starting

Once the hardware is calibrated and ready for the recording, we should start ROS
first:

1 r o s c o r e

Next, the cameras and the IMU can be started:

1 cd run
2 ros launch s t a r t a l l . launch

To verify that the hardware is powered on and is running, try:

1 rosrun image view image view
image :=/ cam l e f t / image raw

2 rosrun image view image view
image :=/ cam right / image raw

3 r o s t o p i c echo /imu/ data

Here, “image view” should display camera images and “echo” should con-
stantly print IMU measurements. If left and right cameras are swapped, then
“start all.launch” file has to be updated. In this case, camera images are black
and white, which is due to the fact that “image raw” topic delivers only such
kind of images - this is the expected behavior.

37

Chapter 5. Implementation 5.6. Software documentation

5.6.4 Recording

To record a sequence to be later processed by OKVIS or SLAM, please do the
following (after the hardware is running):

1 rosbag record / cam l e f t / image raw
/ cam right / image raw / cam l e f t / exposure
/ cam right / exposure /imu/ data
/imu/ ana log in1 −O datase t . bag

This will start the recording. After you are done, please press Ctrl+C to stop
the recording. The recorded sequence will be saved in the file dataset.bag in the
current folder. To see the length of the sequence, you can use:

1 rosbag i n f o datase t . bag

After the recording, the sequence’s timestamps have to be adjusted (time syn-
chronization is happening here):

1 python bag ad jus t . py datase t . bag d a t a s e t a d j . bag

5.6.5 Configuration

The main config is stored in slam workspace/config ours.yaml. Most part is the
same as OKVIS config. Here is the list of new, SLAM-only options:

• DBoW2Vocabulary - path to DBOW2 model

• DBoW2Threshold - threshold to assume that images are similar (default:
0.06)

• factorWeight - weight of loop closure factors (default: 0.3)

• displayPath - display 2D top down view of the trajectory

• displayImages - display images that are processed by OKVIS

• waitFinish - after the processing is done, wait for user input

If you want to change some options, use slam workspace/config ours.yaml file.
However, if you want to change the calibration, you have to generate a new config.
Suppose the output of full kalibr calibration is in file kalibr full.yaml. Launch the
following:

1 cd s lam workspace
2 python o k v i s c o n f i g . py k a l i b r f u l l . yaml

38

5.6. Software documentation Chapter 5. Implementation

This will take values from kalibr full.yaml and put them in correct format to con-
fig ours.yaml. The template that is used is config okvis templ.yaml. Note, that
OKVIS might complain about config ours.yaml format, then you need to refor-
mat it using some online yaml linter, for example http://www.yamllint.com/.
Do not forget, that the first line of config ours.yaml should be “%YAML:1.0”
(yes, it is not valid yaml for python but somehow valid for C++). Comments
about OKVIS configuration options can be found in config okvis templ.yaml.

Indoor/Outdoor IMU configuration

It is important to know, that different IMU settings are required for indoors and
outdoors sequences. For indoors, use sigma a c= 0.002 and sigma g c= 0.0008.
For outdoors, use sigma a c= 0.02 and sigma g c= 0.008. The numbers are
different, because outdoors the camera is carried by a person or is mounted on
the bike. Steps and bumps on the road add more noise to IMU measurements,
so these parameters make OKVIS less sensitive to noise.

5.6.6 Running OKVIS

To start OKVIS on the recorded and adjusted sequence, run:

1 cd s lam workspace
2 ros launch okv i s node synchronous . launch

bag :=/ path/ to / d a t a s e t a d j . bag

During the processing, OKVIS outputs current images as well as a trajectory
top-down view.
Note: update the absolute path to config in okvis node synchronous.launch.

5.6.7 Running SLAM

SLAM is started similar to OKVIS:

1 cd s lam workspace
2 ros launch s lam node synchronous . launch

bag :=/ path/ to / d a t a s e t a d j . bag
save to :=/ path/ to / save /map/

After the completion, the map will be stored on the hard drive. Moreover, since
SLAM supports relocalization, the existing map can be reused:

1 ros launch s lam node synchronous . launch
bag :=/ path/ to / o t h e r d a t a s e t a d j . bag
save to :=/ path/ to / save /map/
load from :=/ path/ to / load /map

39

Chapter 5. Implementation 5.7. Discussion

Note: update the absolute path to config in slam node synchronous.launch.

5.6.8 Real-time SLAM

SLAM (like OKVIS) is real-time capable. It can be started as a ROS node that
subscribes to IMU and camera topics and performs the estimation in real time. To
save the map, press Ctrl+C. The map path is in slam node.launch file. Starting
looks like following:

1 cd s lam workspace
2 ros launch slam node . launch

Note: update the absolute path to config in slam node.launch.

5.7 Discussion

In the end we have obtained the working hardware setup to perform visual odom-
etry or SLAM. The cameras are calibrated with respect to each other and to the
IMU. The measurements of the IMU trigger the cameras’ image capturing process
via special hardware synchronisation pins. The whole setup is portable with the
laptop and the power bank, and can be placed into a backpack.
We have recorded multiple sequences inside our lab as well as outside, on the
street. These sequences were fed to OKVIS to verify that everything is properly
calibrated and synchronised. One important finding from these experiments was
that dynamic objects in the sequence (e.g. people and cars) degrades quite a lot
the quality of the trajectory. This happens because feature points are extracted
on dynamic objects, therefore feature points world positions are not constant.
It can be easily seen that during OKVIS evaluation by the authors, they have
used only EuRoC MAV datasets [LLB+15] without any dynamic objects (empty
machine hall, empty room).

40

6
Evaluation

This chapter will evaluate the SLAM approach that was created during this thesis.
In order to do so, we have performed various tests on the EuRoC MAV dataset
[BNG+16] and our own recorded sequences.

6.1 DBoW2 vs. FAB-MAP2.0

To pick the image similarity measure, we have decided to evaluate these two ap-
proaches. Instead of FAB-MAP 2.0 we have used openfabmap [GMW+12] library
that corresponds to the FAB-MAP 2.0 paper [CN11].
As a training dataset we have used 10000 images from SUN RGB-D dataset
[SLX15] that consists mostly of indoor images. We have verified that the detec-
tors, trained using this dataset, work fine outdoors too. First notable difference
is the speed of training: DBoW2 took around 8 hours, while openfabmap took
almost two days.
To use as a test datasets, we have handcrafted small benchmarks that contained
image pairs that should be matched as loop closures:

• office small - 6 images from our office, 2 loop closures expected

• office big - 298 images from our office, 3 loop closures expected

• outdoors - 10 images from the car camera, 5 loop closures expected

The detection results can be seen in the Table 6.1. There are no false positives
using both methods. Few examples of image pairs where DBoW2 works and
openfabmap fails can be seen in Figure 6.1.

It can be seen, that DBoW2 constantly delivers better results. Moreover, its
execution times are lower too (as stated in the original paper). Having this
information we have decided to use DBoW2 as image similarity detector.

41

Chapter 6. Evaluation 6.2. EuRoC MAV dataset

Table 6.1: DBoW2 vs FAB-MAP 2.0, Our Comparison

Dataset openfabmap DBoW2
office small 1/2 (50%) 2/2 (100%)
office big 1/3 (33%) 3/3 (100%)
outdoors 1/5 (20%) 3/5 (60%)

(a) Loop closure pair from office small dataset

(b) Loop closure pair from outdoors dataset

Figure 6.1: Examples of loop closures that are detected by DBoW2 but not open-
fabmap

6.2 EuRoC MAV dataset

6.2.1 General performance

We have started evaluation from running our SLAM system on every EuRoC
dataset sequence (Machine Hall and Vicon Room). There are no pre-designed
loop closure parts since these sequences were recored to evaluate general perfor-
mance. However, the same place revisiting happens in most of the sequences
leading to the improved quality of the detection.

42

6.2. EuRoC MAV dataset Chapter 6. Evaluation

To quantitatively evaluate the detection, we have used the following metrics
[SEE+12]:

• ATE (Absolute Trajectory Error) - represents the average distance between
corresponding points of the estimated trajectory and the ground truth. Two
points correspond to each other if their timestamps are similar.

• RPE (Relative Position Error) - represents the average error between the
parts of the trajectory that are divided by the fixed time deltas (we use
0.5,1,2,5,10 sec).

The dataset includes the ground truth trajectory from the Leica MS50 laser
tracker, that can be temporary and spatially aligned with the trajectory from
OKVIS or SLAM. The results for stereo setup can be seen in Table 6.2. In the
table, the ATE error in meters is displayed for trajectories from OKVIS and
SLAM. The datasets MH1-MH5 encode the Machine Hall and V11-V22 encode
the Vicon Room.

Table 6.2: The comparison of the SLAM and OKVIS in EuRoC dataset. The
lower the better.

ATE [m] MH1 MH2 MH3 MH4 MH5 V11 V12 V21 V22

OKVIS mono 0.34 0.36 0.30 0.48 0.47 0.12 0.16 0.12 0.22

SLAM mono 0.25 0.18 0.21 0.30 0.35 0.11 0.13 0.12 0.20

OKVIS stereo 0.21 0.14 0.25 0.33 0.36 0.08 0.10 0.09 0.16

SLAM stereo 0.11 0.09 0.21 0.27 0.32 0.09 0.10 0.08 0.16

It can be seen, that SLAM is better then OKVIS in the Machine Hall sequences.
However, the difference is much smaller in Vicon Room. This can be explained
through the nature of the sequences: in the Machine Hall, the drone is flying
in the big room in straight lines for tenth of meters and the revisiting happens
not frequently and gives a good improvement of the trajectory (see Figures 6.2
and 6.3). On the other hand, the Vicon room is pretty small room and camera
moves in a chaotic fashion causing a lot of frame overlays in the pretty small area
(see Figure 6.4). This leads to just small improvements because there are no real
loops closures - the camera never goes further then a few meters from the starting
position. From this information we can draw a conclusion that SLAM gives the
biggest improvements in the big rooms or areas where the setup moves in long
(more then a few meters) shifts, while in the small rooms the SLAM improvement
is little to none.

Since OKVIS authors claimed that it can run with the single camera setup,
we have decided to evaluate our SLAM approach with a single camera too. The
results can be seen in the Table 6.2. The errors for mono are naturally higher then
for stereo. However, it can be seen, that SLAM still delivers the improvement
over original OKVIS estimation even for a single camera setup.

43

Chapter 6. Evaluation 6.2. EuRoC MAV dataset

In order to further evaluate the estimation, we have made plots of the OKVIS
and SLAM trajectories compared to ground truth in Figures 6.2, 6.3 and 6.4.

We have mentioned that we have also computed RPE metrics. The evaluation
showed that the RPE difference between OKVIS and SLAM is less then 1 cm,
so these numbers are not included into the tables. Summing up, SLAM doesn’t
change much the shape of the trajectory (RPE is similar), but aligns it globally
more consistent (APE is smaller).

6.2.2 Relocalization

Apart from the trajectory accuracy we wanted to also evaluate the relocalization
capabilities. In order to do that, we have performed three tests.

Number of keyframes to relocalize To relocalize in the map, SLAM needs
at least 4 subsequent keyframes that match subsequent keyframes in the map,
but this number can be higher. We wanted to see how many frames are actually
needed in practice. To test this, we have run SLAM on the Vicon Room sequences
to relocalize within the same sequence. For example, first we run V1 01 easy, save
it as a map, and then we start V1 01 easy to relocalize in this map. Ideally, re-
localization should happen quickly because this is basically the same sequence,
i.e. the perfect case. Moreover, we have run relocalization with different time
offsets from the beginning of the sequence (10 sec, 20 sec, etc) to get more varied
and realistic results (even if we want to relocalize in the same area, it is very
unlikely that exactly the same starting location is used). We have built the his-
togram that can be seen in Figure 6.5. It can be seen that the results are close
to expected - most of the runs required exactly 4 keyframes for relocalization to
establish and some other required up to 8 keyframes that is still pretty good.
The algorithm uses more then 4 keyframes when there are no reliable subsequent
correspondences between the keyframes. For example, when 8 keyframes are used
that means that relocalization happened after 8 keyframes and 4 out of 8 had a
reliable matches in the old map.

Relocalization error We wanted to see how does incremental relocalization
and alignment improve the ATE error in relation to the ground truth. It is ex-
pected that right after the relocalization is established, the error can be high, but
after some time, the new factors that tie together the new sequence and the map
it is relocalized within, should decrease the error. The sequences were run in the
same map as in previous example with different time offsets. The result can be
seen in Figure 6.6. The curve goes down pretty quickly as we have expected and
becomes flat after 10 frames on average. Having cameras working at 20 Hz, we
can say that the relocalization becomes stable after 0.5 sec after establishing the
initial association between the sequence and the map.

44

6.2. EuRoC MAV dataset Chapter 6. Evaluation

(a) OKVIS trajectory estimate.

(b) SLAM trajectory estimate.

Figure 6.2: Estimates on the MH 01 easy sequence. The red lines represent the
difference between the ground truth and the estimated trajectory.
The smaller the red gaps, the better. We can see well in the top left
corner that SLAM trajectory has smaller deviation from the ground
truth. 45

Chapter 6. Evaluation 6.2. EuRoC MAV dataset

(a) OKVIS trajectory estimate.

(b) SLAM trajectory estimate.

Figure 6.3: Estimates on the MH 02 easy sequence. The red lines represent the
difference between the ground truth and the estimated trajectory.
The smaller the red gaps, the better. We can see well in the top left
corner that SLAM trajectory has smaller deviation from the ground
truth.46

6.2. EuRoC MAV dataset Chapter 6. Evaluation

(a) OKVIS trajectory estimate.

(b) SLAM trajectory estimate.

Figure 6.4: Estimates on the V1 02 medium sequence. The red lines represent
the difference between the ground truth and the estimated trajectory.
The smaller the red gaps, the better. We can see that there is little to
no difference between OKVIS and SLAM which corresponds to equal
ATE values. 47

Chapter 6. Evaluation 6.2. EuRoC MAV dataset

Figure 6.5: The amount of keyframes needed to relocalize within the same se-
quence (EuRoC sequences).

Relocalization in different map The Vicon Room sequences are all recorded
in the same, relatively small room. We have decided to try to relocalize these se-
quences within each other. For example, sequence V1 01 easy can use V1 02 medium
as a map. After relocalizing within the different sequence, we have computed the
ATE error of the sequence trajectory compared to the ground truth. The results
can be seen in the Table 6.3. We see that for some combinations the error goes
up, but it still remains quite low. The increasing of the error can be explained
by the bias to the map sequence. The new sequence is aligned with the map
sequence, that in turn, is not perfect and has some ATE error compared to its
ground truth. These errors, naturally, accumulate. However, the provided test
shows that relocalization works well when we use different sequence as a map
with just minor image overlays.

Table 6.3: ATE error after the sequence was relocalized with respect to other
sequence. The lower the better.

ATE [m] V11 in V12 V12 in V11 V21 in V22 V22 in V21

Solo 0.09 0.10 0.08 0.16

Relocalized 0.11 0.13 0.08 0.13

48

6.2. EuRoC MAV dataset Chapter 6. Evaluation

Figure 6.6: The ATE error progression after relocalization.

6.2.3 3D loops closure evaluation

One important part of our system is detecting of the similar images. More pre-
cisely, the images that show the same scene, possibly from a bit different positions.
We can use such images to determine that the cameras revisit the same location.
It was mentioned before that we use the combination of DBoW2 (Section 3.3.2)
and RANSAC 3D-2D relative pose estimation [KF14]. After the system was in
place, we have decided to quantitatively evaluate the image matches quality. To
do so, we have started by taking a 3D point cloud from the Vicon Room sequences
that is a room 3D-scanned by Leica MS50 in EuRoC MAV dataset (see Figure
6.7).

Using it as a ground truth, we were able to project 3D points into the camera
frame that follows the ground truth trajectory. If a pair of images have at least
50% of shared 3D points in the projection, then this pair is treated as a ground
truth match. After processing, we have calculated how many of these matches
were detected by our SLAM system. The results can be seen in Table 6.4. We
can see that the percentages are quite low. However, after we have looked at the
ground truth matches that were not detected by SLAM system, it became appar-
ent that this method of evaluation is over-performing. I.e. view port changes up
to 90 degrees are not a problem for 3D point cloud and occlusion is not accounted

49

Chapter 6. Evaluation 6.3. Our dataset

Figure 6.7: The 3D point cloud from Vicon Room dataset that was used to de-
termine ground truth image matches.

for. There are some example of false negatives in Figure 6.9. It can be seen, that
such detections are very challenging even for the human eye. Motion blur also
makes it harder to compute and compare distinct features while 3D cloud is un-
affected by it. We have also analyzed how the loop closure performance changes
with the ground truth threshold and it can be seen that it is quite stable (see
Figure 6.8).

Table 6.4: Image matches detection of our SLAM system compared to the 3D
cloud ground truth.

V11 V12 V21 V22
detected 18/54 19/34 10/41 30/75
% detected 33.3 55.8 24.3 40.0

6.3 Our dataset

We have assembled and calibrated our own hardware setup that works with
OKVIS and SLAM system. In order to evaluate the setup and SLAM system
we have recorded various sequences using our setup.

50

6.3. Our dataset Chapter 6. Evaluation

Figure 6.8: This plot shows how SLAM accuracy and the number of detected loop
closures change with ground truth threshold.

6.3.1 Overview

In this section we are going to evaluate the SLAM system using the following
sequences:

• E1 - small sequence (135 m) inside the long office room. The setup is
positioned on a rolling chair and is moved in multiple long loops.

• E2 - small sequence (177 m) inside the university building. The setup is
held in hands of a walking person. The person walks through three floors.

• E3 - medium (875 m) outdoors sequence. The setup is held in hands of a
walking person. The person makes a circle around the campus.

• E4, E5 - big outdoors sequences (1341 and 1366 m). The setup is held
in hands of a walking person. The person makes a circle around the cam-
pus with few loops around different buildings. We have made two similar
sequences here to see how consistent is the system at such scale.

• E6 - the longest (2891 m) outdoor sequence. The setup is mounted on a
bicycle steering wheel.

Images examples from the sequences can be found in Figures 6.10, 6.11 and
6.12.

51

Chapter 6. Evaluation 6.3. Our dataset

6.3.2 E1

In this experiment the camera on a rolling chair was moved in loops. The length
is 135 m. The results were good (see Figure 6.13) - in stereo setup, OKVIS had
only minor drifts that were corrected by SLAM. Loop closures happened along
the way as expected. In mono setup, OKVIS drifted quite a lot, however SLAM
corrected it very well, resulting in aligned loops, like in stereo case.

Figure 6.9: The image pairs that show the same scene according to the 3D point
cloud, but not to SLAM system. Such cases are very challenging for
computer vision detections.

52

6.3. Our dataset Chapter 6. Evaluation

Figure 6.10: Example images from E1 sequence, where the camera is positioned
on the rolling chair in the office.

6.3.3 E2

During the university building traverse, OKVIS showed pretty good estimate, but
SLAM results were much worse. We have investigated into that, and the reason
for poor SLAM estimation is that the camera sees staircase parts at different
levels that look very similar. Therefore, SLAM fires a loop closure while these
images were actually taken at different floors. You can see the trajectory and
staircase image examples in Figure 6.14.

6.3.4 E3

This outdoors sequence was processed well by both OKVIS and SLAM. It was
a first outdoors sequence with the trajectory few hundred meters long (875 m).
We have overlayed the trajectory with the Google Map of the neighborhood, see
Figure 6.15. It is interesting, that with mono configuration, the OKVIS trajectory
is not much worse then stereo.

53

Chapter 6. Evaluation 6.3. Our dataset

Figure 6.11: Example images from E2 sequence, where the person with the cam-
era is walking around the building, visiting multiple floors.

Table 6.5: Average checkpoint error

error[m] E4 E5
OKVIS 10.9 40.7
SLAM 0.89 0.93

Table 6.6: Average checkpoint error. We can see that SLAM improved trajectory
is much better then original OKVIS estimation.

6.3.5 E4

This outdoors sequence is longer then E3 (1366 m) and it also has two big loops
in the middle (around the building and around the parking lot). The results can
be seen in Figure 6.16. We can see that the final position is pretty close to the
initial position (less then 2 meters for SLAM optimized trajectory) which means
a good estimation.

54

6.3. Our dataset Chapter 6. Evaluation

Figure 6.12: Example images from E3 sequence, where the person with the cam-
era is walking around the university campus on a sunny day.

6.3.6 E5

This sequence is very similar to E4, but during recording under the afternoon
sun, the laptop was overheated, throttled and few camera frames were dropped.
Such a situation is an interesting challenge for both OKVIS and SLAM. We are
providing stereo only result here in Figure 6.17. It can be seen, that OKVIS
trajectory is quite bad, it even finishes out of bound of the satellite map. Fortu-
nately, additional loops provided enough loop closure constrains to SLAM, so it
delivers a very good trajectory, that is almost indistinguishable from the results
of E4 (that had no issues during recording).
To have some quantitative estimation of how good the trajectory is, we have
placed checkpoints (via gamepad buttons) in roughly same place before and after
each loop, 7 checkpoints in total. Later we have calculated average checkpoint
error that shows the distance within the three groups (2,2,3) of checkpoints. Each
group is showed as a green circle in the trajectory images. Ideally, the error should
be close to zero. The results for sequences E4 and E5 are shown in Table 6.5.
Moreover, we have verified that relocalization is working on our sequences. The

55

Chapter 6. Evaluation 6.3. Our dataset

(a) Stereo case, top view.

(b) Mono case, top view.

(c) Stereo case, Z position over time. (d) Mono case, Z position over time.

Figure 6.13: E1 OKVIS and SLAM trajectory estimates. Blue is OKVIS esti-
mated, red is SLAM estimated, yellow lines show the loop closure
constraints.

amount of keyframes to relocalize (see Figure 6.18) is close to EuRoC results (Fig-
ure 6.5) and is mostly 4 keyframes (which is a minimal required amount). During
relocalization evaluation, we have also measured the performance of RANSAC

56

6.3. Our dataset Chapter 6. Evaluation

(a) Side view, black lines show actual floors. SLAM trajectory is much worse
then OKVIS because of the wrong staircase matches.

(b) Example of false positive match. Note that posters on the wall are actually
different because these images were taken at different floors.

Figure 6.14: E2 OKVIS and SLAM trajectory estimates. Blue is OKVIS esti-
mated, red is SLAM estimated, yellow lines show the loop closure
constraints.

3D-2D relative pose computation. Since the relocalization was happening in ex-
actly the same sequences, very similar images are matched. Therefore, relative
pose offset should be close to zero. The results are displayed in Figure 6.20. It can
be seen that most of the relative poses’ offsets are close to zero, as expected. The
progression of ATE error with respect to frames since relocalization can be seen
in Figure 6.19. Here, the ATE error is computed with respect to saved SLAM
trajectory. The shape is similar to EuRoC evaluation.

6.3.7 E6

This sequence is the longest that we have recorded (2.8 km). The camera was
mounted on the bicycle steering wheel. We have had a ride around the residential
area next to the campus. The sequence is challenging because of the movement
of other cars and people, the speed of the camera and the IMU shocks. The IMU
we use has pretty low thresholds for gyro and accelerometer saturation, so small
bumps on the road and sharp turns lead to saturation in OKVIS. We think this is

57

Chapter 6. Evaluation 6.4. Discussion

(a) Stereo case. (b) Mono case.

(c) Stereo case, Z position over time. (d) Mono case, Z position over time.

Figure 6.15: E3 OKVIS and SLAM trajectory estimates. Blue is OKVIS esti-
mated, red is SLAM estimated, yellow lines show the loop closure
constraints.

the reason why OKVIS estimation deviates a lot for actual trajectory. Moreover,
it can be seen that the biggest drift happens on the way back right after a sharp
270 degree turn. On the other hand, SLAM improves the OKVIS trajectory a lot,
delivering an estimation that is close to the actual trajectory (see Figure 6.21).

6.4 Discussion

We have evaluated our SLAM approach using both EuRoC MAV dataset and the
sequences that we have recorded using our hardware setup. For every experiment
we have used laser-scanned ground truth trajectory (if available) and OKVIS

58

6.4. Discussion Chapter 6. Evaluation

(a) Trajectory with map. (b) Z position over time.

Figure 6.16: E4 OKVIS and SLAM trajectory estimates. Blue is OKVIS esti-
mated, red is SLAM estimated, yellow lines show the loop closure
constraints. Green circles show the areas with checkpoints.

estimation as a baseline. Summing the experiments, we can say that SLAM
outperforms OKVIS in all sequences with loop closures (Machine Hall, E3-E6)
and in most sequences without specific loop closures (Vicon Room). We have
found out that the longer the sequence, the bigger are the gains from using
SLAM over OKVIS - for this we have recorded sequences outdoors with length
up to 3 km.

As for relocalization we are able to reliably perform the relocalization in the
same sequences with expected errors behavior. Relocalization within different
sequence was also tested and yielded good results, compared to the ground truth
trajectory.

Evaluation of the image similarity algorithms DBoW2 and FAB-MAP showed
that DBoW2 provides better matches and had better testing and training times,
so we have selected it as our primary image similarity estimator. RANSAC with
3D-2D matches geometrically verifies the estimation and provides a relative pose
between images.

We have tried to evaluate loop closure detection using 3D point cloud from the
ground truth. However, this method showed that detecting loop closures from 3D
point cloud is superior to 2D images comparison and it not a very good measure
in our case.

59

Chapter 6. Evaluation 6.4. Discussion

(a) Trajectory with map. (b) Z position over time.

Figure 6.17: E5 We have lost few frames during recording due to overheating. Be-
cause of that, OKVIS estimated pretty bad trajectory, that finishes
out of bounds of the given map piece. Nevertheless, SLAM have
used loops in the trajectory to improve the trajectory dramatically.
Green circles show the areas with checkpoints.

Figure 6.18: The amount of keyframes needed to relocalize within the same se-
quence (sequences E3, E4).

60

6.4. Discussion Chapter 6. Evaluation

Figure 6.19: The progression of ATE error when relocalizing within the same se-
quence (sequences E3, E4). The curve gets flat quickly, as expected.

(a) Full scale. (b) Details about the dense area.

Figure 6.20: The length of the RANSAC relative pose using very similar images.
Best when close to zero.

61

Chapter 6. Evaluation 6.4. Discussion

(a) Trajectory with map.

(b) Z position over time.

Figure 6.21: E6 OKVIS and SLAM trajectory estimates. Blue is OKVIS esti-
mated, red is SLAM estimated, yellow lines show the loop closure
constraints

62

7
Conclusion

In this thesis we have presented a Simultaneous Localization and Mapping (SLAM)
layer on top of the existing visual-inertial odometry library OKVIS [LLB+15].
Our method uses a global pose graph to improve the trajectory estimation, while
OKVIS delivers only local temporal consistency. The estimated trajectory can
be saved as a map in which other sequences can relocalize. After relocalization,
SLAM continues to work with respect to both new and old images, and trajecto-
ries.

Global constraints are provided by a loop closure mechanism. Namely we detect
when the camera revisits the same area and add corresponding constraints to the
pose graph. This is done by estimating image similarity via DBoW2 [GLT12]
and RANSAC 3D-2D relative pose [KF14] calculation between two images. The
graph built from OKVIS constraints and loop closure constraints are optimized
by gtsam library. There is the ability to save the map to disk and relocalize in the
map during subsequent runs. Having a global map with the ability to relocalize
within this map can be useful for autonomous robots that operate in the unknown
location.

The resulting software is bundled together as a ROS node and is capable of
real-time processing. Apart from the software solution, we have assembled the
hardware setup from two cameras and IMU. These components are calibrated
with respect to each other (including time calibration). This way we are able to
record our own sequences to better debug and evaluate SLAM. Furthermore, this
setup can be used for other Computer Vision tasks solely or mounted to some
robot.

Quantitative evaluation on EuRoC MAV dataset showed that the SLAM layer
delivers a good performance boost compared to original OKVIS. We have also
performed qualitative evaluation using our recorded sequences indoors and out-
doors. The results show that the SLAM layer improves the OKVIS estimation
when loops are present. Relocalization evaluation showed that it works consis-
tently and allows to perform relocalization within different sequences.

63

Chapter 7. Conclusion 7.1. Discussion

7.1 Discussion

Overall, our SLAM system performance is better then OKVIS. The improvement
is the highest when loop closures are present in the sequence. The disadvantage of
the proposed method is that when there are no loop closures in the sequence and
same areas are never revisited, the trajectory is indistinguishable from OKVIS
estimation, while small running time overhead is added. We can recommend to
use our SLAM system in cases when loop closures are probable in the sequences.
Relocalization, on the other hand, works well even in the maps without any loop
closures. Of course, having loops closures either in the map or in the sequence
that is relocalized, improves the estimated trajectory.

Another advantage is that the SLAM system runs in real time, so it can be
used by robots for navigation. The downside is that since SLAM uses only frames
that were marginalized out by OKVIS, there is a 5 keyframes delay between the
actual robot movement and the moment it is processed by SLAM.

We have found that OKVIS is very sensitive to moving objects in the sequence.
For example, passing people or cars can decrease the quality of the estimation.
Moreover, the lightning conditions are also important, especially outdoors. In
one case loop closure was not detected, because the sun has moved behind the
building and the shadows looked different. Another outdoors problem can arise
when relocalization is happening few days after the map was recorded. Things
like parking cars or falling leaves can drastically change the location appearance,
making it harder for DBoW2 to correctly identify the loop closures. Very similar
appearance patters, on the other hand, can introduce the wrong loop closure
constraints, like in E2 staircase example.

7.2 Future work

As for the future work, the following points can be improved:

• OKVIS factors Instead of OKVIS optimized poses, one can try to use raw
IMU and reprojection factors that OKVIS uses in optimization. Combined
with loop closure constraints, it might further improve the estimation.

• IMU stability We have found out that the IMU we used is not as precise
as the one used by Leutenegger et al. Replacing IMU in the hardware setup
can improve the performance of our hardware.

• Optimization Even though SLAM can run in real-time, it is still possible
to speed it up. The slowest part currently is graph optimizer, so replacing
gtsam with faster library or creating one can speed up the system

• Dynamic objects The dynamic objects in the sequence (e.g. people, cars
etc) bring down the OKVIS estimation quality. Using semantic segmenta-

64

7.2. Future work Chapter 7. Conclusion

tion to detect such image regions and ignoring them for landmark estimation
can reduce the negative impact.

• Better loop closures As we have seen in E2 dataset, using only image
similarity sometimes is not enough to perform reliable loop closures, because
different areas can look almost perfectly similar while they are not the
correct case for the loop closure.

65

Bibliography

[BFF11] Timothy Barfoot, James R Forbes, and Paul T Furgale. Pose es-
timation using linearized rotations and quaternion algebra. Acta
Astronautica, 2011.

[BNG+16] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Jo-
ern Rehder, Sammy Omari, Markus W Achtelik, and Roland Sieg-
wart. The euroc micro aerial vehicle datasets. The International
Journal of Robotics Research, 2016.

[BTVG06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up
robust features. In European Conference on Computer Vision, 2006.

[CL68] C Chow and C Liu. Approximating discrete probability distributions
with dependence trees. IEEE transactions on Information Theory,
1968.

[CN08] Mark Cummins and Paul Newman. Fab-map: Probabilistic local-
ization and mapping in the space of appearance. The International
Journal of Robotics Research, 2008.

[CN11] Mark Cummins and Paul Newman. Appearance-only slam at large
scale with fab-map 2.0. The International Journal of Robotics Re-
search, 2011.

[Dav03] Andrew J Davison. Real-time simultaneous localisation and map-
ping with a single camera. In Proceedings. Ninth IEEE International
Conference on Computer Vision, 2003.

[Del12] Frank Dellaert. Factor graphs and gtsam: A hands-on introduction.
2012.

67

Bibliography Bibliography

[ESC14] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-
scale direct monocular slam. In European Conference on Computer
Vision. 2014.

[FCDS15] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scara-
muzza. IMU preintegration on manifold for efficient visual-inertial
maximum-a-posteriori estimation. In RSS, 2015.

[FRS13] Paul Furgale, Joern Rehder, and Roland Siegwart. Unified temporal
and spatial calibration for multi-sensor systems. In IEEE Interna-
tional Conference on Intelligent Robots and Systems, 2013.

[GLT12] Dorian Gálvez-López and Juan D Tardos. Bags of binary words for
fast place recognition in image sequences. IEEE Transactions on
Robotics, 2012.

[GMW+12] Arren Glover, William Maddern, Michael Warren, Stephanie Reid,
Michael Milford, and Gordon Wyeth. Openfabmap: An open source
toolbox for appearance-based loop closure detection. In IEEE Inter-
national Conference on Robotics and Automation, 2012.

[GSCI15] Ben Glocker, Jamie Shotton, Antonio Criminisi, and Shahram Izadi.
Real-time RGB-D camera relocalization via randomized ferns for
keyframe encoding. IEEE Trans. Vis. Comput. Graph., 2015.

[HS88] Chris Harris and Mike Stephens. A combined corner and edge detec-
tor. In Alvey Vision Conference, 1988.

[KF14] Laurent Kneip and Paul Furgale. Opengv: A unified and generalized
approach to real-time calibrated geometric vision. In IEEE Interna-
tional Conference on Robotics and Automation, 2014.

[KGC15] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A
convolutional network for real-time 6-dof camera relocalization. In
Proceedings of the IEEE International Conference on Computer Vi-
sion, 2015.

[LCS11] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. Brisk:
Binary robust invariant scalable keypoints. In International Confer-
ence on Computer Vision, 2011.

[LLB+15] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart,
and Paul Furgale. Keyframe-based visual–inertial odometry using
nonlinear optimization. The International Journal of Robotics Re-
search, 2015.

68

Bibliography Bibliography

[LSB+15] Simon Lynen, Torsten Sattler, Michael Bosse, Joel Hesch, Marc
Pollefeys, and Roland Siegwart. Get out of my lab: Large-scale,
real-time visual-inertial localization. In RSS, 2015.

[LSCU12] Hyon Lim, Sudipta N. Sinha, Michael F. Cohen, and Matthew Uyt-
tendaele. Real-time image-based 6-dof localization in large-scale en-
vironments. In IEEE Conference on Computer Vision and Pattern
Recognition, 2012.

[MAMT15] Raul Mur-Artal, JMM Montiel, and Juan D Tardos. Orb-slam: a
versatile and accurate monocular slam system. IEEE Transactions
on Robotics, 2015.

[MR07a] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state con-
straint kalman filter for vision-aided inertial navigation. In IEEE
International Conference on Robotics and Automation, 2007.

[MR07b] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state con-
straint kalman filter for vision-aided inertial navigation. In IEEE
International Conference on Robotics and Automation, 2007.

[MSUK14] Sven Middelberg, Torsten Sattler, Ole Untzelmann, and Leif
Kobbelt. Scalable 6-DOF Localization on Mobile Devices. 2014.

[MTK+02] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Weg-
breit, et al. Fastslam: A factored solution to the simultaneous local-
ization and mapping problem. In Aaai/iaai, 2002.

[NRB+14] Janosch Nikolic, Joern Rehder, Michael Burri, Pascal Gohl, Stefan
Leutenegger, Paul T Furgale, and Roland Siegwart. A synchronized
visual-inertial sensor system with fpga pre-processing for accurate
real-time slam. In IEEE International Conference on Robotics and
Automation, 2014.

[SEE+12] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard,
and Daniel Cremers. A benchmark for the evaluation of rgb-d slam
systems. In IEEE International Conference on Intelligent Robots and
Systems, 2012.

[SGZ+13] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, An-
tonio Criminisi, and Andrew Fitzgibbon. Scene coordinate regression
forests for camera relocalization in rgb-d images. In IEEE Conference
on Computer Vision and Pattern Recognition, 2013.

[SLX15] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d:
A rgb-d scene understanding benchmark suite. In IEEE Conference
on Computer Vision and Pattern Recognition, 2015.

69

Bibliography Bibliography

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
robotics. MIT press, 2005.

[UESC16] Vladyslav Usenko, Jakob Engel, Jörg Stückler, and Daniel Cremers.
Direct visual-inertial odometry with stereo cameras. 2016.

[VH12] Jonathan Ventura and Tobias Höllerer. Wide-area scene mapping for
mobile visual tracking. In ISMAR, 2012.

70

	Introduction
	Thesis structure

	Related work
	Preliminaries
	Simultaneous Localization and Mapping
	Introduction
	Graph Formulation

	OKVIS
	Introduction
	Notation
	Keyframes and marginalization

	Image similarity
	FAB-MAP 2.0
	DBoW2

	Keyframe-based Visual-Inertial SLAM
	SLAM
	Motivation

	Loop closures
	Graph optimization
	Algorithm

	Relocalization
	Motivation
	Algorithm

	Implementation
	Hardware
	Calibration
	Synchronization
	Integration with OKVIS
	Output
	File formats
	Visualization

	Software documentation
	Installation
	Drivers
	Starting
	Recording
	Configuration
	Running OKVIS
	Running SLAM
	Real-time SLAM

	Discussion

	Evaluation
	DBoW2 vs. FAB-MAP2.0
	EuRoC MAV dataset
	General performance
	Relocalization
	3D loops closure evaluation

	Our dataset
	Overview
	E1
	E2
	E3
	E4
	E5
	E6

	Discussion

	Conclusion
	Discussion
	Future work

	Bibliography

