Welcome to the Computer Vision Group at RWTH Aachen University!

The Computer Vision group has been established at RWTH Aachen University in context with the Cluster of Excellence "UMIC - Ultra High-Speed Mobile Information and Communication" and is associated with the Chair Computer Sciences 8 - Computer Graphics, Computer Vision, and Multimedia. The group focuses on computer vision applications for mobile devices and robotic or automotive platforms. Our main research areas are visual object recognition, tracking, self-localization, 3D reconstruction, and in particular combinations between those topics.

We offer lectures and seminars about computer vision and machine learning.

You can browse through all our publications and the projects we are working on.

We won the 2019 YouTube-VIS Challenge on Video Instance Segmentation

Our short paper has the details.

Sept. 30, 2019

We came 6th in the 2019 YouTube-VOS Challenge on Video Object Segmentation

Our short paper has the details.

Sept. 29, 2019

We won the 2019 DAVIS Challenge on Unsupervised Video Object Segmentation

Our short paper, UnOVOST, has the details.

June 17, 2019

We placed 2nd in the 2019 DAVIS Challenge on Semi-Supervised Video Object Segmentation

Our short paper, has the details.

June 17, 2019

We have two papers accepted at at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019


March 13, 2019

We have one paper accepted at ACCV 2018

Our paper: "PReMVOS: Proposal-generation, Refinement and Merging for Video Object Segmentation" has been accepted for publication at ACCV 2018.

Oct. 5, 2018

Recent Publications

FEELVOS: Fast End-to-End Embedding Learning for Video Object Segmentation

CVPR 2019

Many of the recent successful methods for video object segmentation (VOS) are overly complicated, heavily rely on fine-tuning on the first frame, and/or are slow, and are hence of limited practical use. In this work, we propose FEELVOS as a simple and fast method which does not rely on fine-tuning. In order to segment a video, for each frame FEELVOS uses a semantic pixel-wise embedding together with a global and a local matching mechanism to transfer information from the first frame and from the previous frame of the video to the current frame. In contrast to previous work, our embedding is only used as an internal guidance of a convolutional network. Our novel dynamic segmentation head allows us to train the network, including the embedding, end-to-end for the multiple object segmentation task with a cross entropy loss. We achieve a new state of the art in video object segmentation without fine-tuning with a J&F measure of 71.5% on the DAVIS 2017 validation set. We make our code and models available at https://github.com/tensorflow/models/tree/master/research/feelvos.


MOTS: Multi-Object Tracking and Segmentation

CVPR 2019

This paper extends the popular task of multi-object tracking to multi-object tracking and segmentation (MOTS). Towards this goal, we create dense pixel-level annotations for two existing tracking datasets using a semi-automatic annotation procedure. Our new annotations comprise 65,213 pixel masks for 977 distinct objects (cars and pedestrians) in 10,870 video frames. For evaluation, we extend existing multi-object tracking metrics to this new task. Moreover, we propose a new baseline method which jointly addresses detection, tracking, and segmentation with a single convolutional network. We demonstrate the value of our datasets by achieving improvements in performance when training on MOTS annotations. We believe that our datasets, metrics and baseline will become a valuable resource towards developing multi-object tracking approaches that go beyond 2D bounding boxes. We make our annotations, code, and models available at https://www.vision.rwth-aachen.de/page/mots.


4D Generic Video Object Proposals


Many high-level video understanding methods require input in the form of object proposals. Currently, such proposals are predominantly generated with the help of networks that were trained for detecting and segmenting a set of known object classes, which limits their applicability to cases where all objects of interest are represented in the training set. This is a restriction for automotive scenarios, where unknown objects can frequently occur. We propose an approach that can reliably extract spatio-temporal object proposals for both known and unknown object categories from stereo video. Our 4D Generic Video Tubes (4D-GVT) method leverages motion cues, stereo data, and object instance segmentation to compute a compact set of video-object proposals that precisely localizes object candidates and their contours in 3D space and time. We show that given only a small amount of labeled data, our 4D-GVT proposal generator generalizes well to real-world scenarios, in which unknown categories appear. It outperforms other approaches that try to detect as many objects as possible by increasing the number of classes in the training set to several thousand.

Disclaimer Home Visual Computing institute RWTH Aachen University